Recurrent wavelet neural network (RWNN) has the advantages such as fast learning property, good generalization capability and information storing ability. With these advantages, this paper proposes an RWNN-based adaptive control (RBAC) system for multi-input multi-output (MIMO) uncertain nonlinear systems. The RBAC system is composed of a neural controller and a bounding compensator.
View Article and Find Full Text PDFIEEE Trans Neural Netw
July 2007
This paper proposes a self-organizing adaptive fuzzy neural control (SAFNC) via sliding-mode approach for a class of nonlinear systems. The proposed SAFNC system is comprised of a computation controller and a supervisory controller. The computation controller including a self-organizing fuzzy neural network (SOFNN) identifier is the principal controller.
View Article and Find Full Text PDFIEEE Trans Neural Netw
September 2006
This paper proposes a wavelet adaptive backstepping control (WABC) system for a class of second-order nonlinear systems. The WABC comprises a neural backstepping controller and a robust controller. The neural backstepping controller containing a wavelet neural network (WNN) identifier is the principal controller, and the robust controller is designed to achieve L2 tracking performance with desired attenuation level.
View Article and Find Full Text PDF