Publications by authors named "Chun-Chun Chang"

Dopamine is a crucial neurotransmitter in the central nervous system (CNS) that facilitates communication among neurons. Activation of dopamine receptors in the CNS regulates key functions such as movement, cognition, and emotion. Disruption of these receptors can result in severe neurological diseases.

View Article and Find Full Text PDF

Chemokines are small, secreted cytokines crucial in the regulation of a variety of cell functions. The binding of chemokine C-X-C motif chemokine ligand 12 (CXCL12) (stromal cell-derived factor 1) to a G-protein-coupled receptor C-X-C chemokine receptor type 4 (CXCR4) triggers downstream signaling pathways with effects on cell survival, proliferation, chemotaxis, migration, and gene expression. Intensive and extensive investigations have provided evidence suggesting that the CXCL12-CXCR4 axis plays a pivotal role in tumor development, survival, angiogenesis, metastasis, as well as in creating tumor microenvironment, thus implying that this axis is a potential target for the development of cancer therapies.

View Article and Find Full Text PDF

Human interleukin-10 (IL-10) is an immunosuppressive and anti-inflammatory cytokine, and its expression is upregulated in tumor tissues and serum samples of patients with various cancers. Because of its immunosuppressive nature, IL-10 has also been suggested to be a factor leading to tumor cells' evasion of immune surveillance and clearance by the host immune system. In this study, we refined a peptide with 20 amino acids, named NK20a, derived from the binding region of IL-10 on the basis of in silico analysis of the complex structure of IL-10 with IL-10Ra, the ligand binding subunit of the IL-10 receptor.

View Article and Find Full Text PDF
Article Synopsis
  • Interleukin-8 (IL-8) is crucial in promoting inflammation and breast cancer through its activation of CXCR1/2 receptors, leading to metastasis.
  • A designed antagonist peptide, RF16, competes with IL-8 for binding to CXCR1/2, effectively inhibiting IL-8-induced effects such as monocyte binding and breast cancer cell progression.
  • Experimental findings show that RF16 significantly reduces proliferation, migration, and invasion in MDA-MB-231 breast cancer cells and enhances the anti-tumor effects of docetaxel in mouse models, suggesting its potential as an additional therapeutic option for breast cancer treatment.
View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on analyzing the three-dimensional structures of proteins, especially for biomedical applications, leveraging advancements in computer technology for modeling and predictions.
  • The study employed various computational tools, including neural network-based methods (AlphaFold2, Robetta, trRosetta) and template-based methods (MOE, I-TASSER), to construct the structure of the hepatitis C virus core protein (HCVcp), which lacks a fully resolved laboratory structure.
  • Results indicated that the Robetta and trRosetta methods were the most effective for initial protein modeling, while MOE excelled among template-based tools, with molecular dynamics simulations confirming the compact and high-quality nature of the predicted protein structures.
View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) pandemic is currently the most serious public health threat faced by mankind. Thus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, is being intensively investigated. Several vaccines are now available for clinical use.

View Article and Find Full Text PDF

Coevolution occurs between viruses and their hosts. The hosts need to evolve means to eliminate pathogenic virus infections, and the viruses, for their own survival and multiplication, have to develop mechanisms to escape clearance by hosts. Hepatitis C virus (HCV) of is a pathogen which infects human liver and causes hepatitis, a condition of liver inflammation.

View Article and Find Full Text PDF

Septicemia is a severe inflammatory response caused by the invasion of foreign pathogens. Severe sepsis-induced shock and multiple organ failure are the two main causes of patient death. The overexpression of many proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6, is closely related to severe sepsis.

View Article and Find Full Text PDF

The abnormal Wnt signaling pathway leads to a high expression of β-catenin, which causes several types of cancer, particularly colorectal cancer (CRC). The inhibition of tankyrase (TNKS) activity can reduce cancer cell growth, invasion, and resistance to treatment by blocking the Wnt signaling pathway. A pharmacophore search and pharmacophore docking were performed to identify potential TNKS inhibitors in the training databases.

View Article and Find Full Text PDF

Multiple myeloma (MM) is typically featured by the increased levels of inflammatory cytokines in the neoplastic plasma cells (PCs) producing monoclonal immunoglobulin. PCs proliferate in the bone marrow, which will lead to extensive skeletal destruction with osteolytic lesions, osteopenia, or pathologic fractures. The diagnostic biology of MM has progressed from morphology and low-sensitivity protein analysis into multiomics-based high-throughput readout, whereas therapeutics has evolved from single active agent to potential active drug combinations underlying precision medicine.

View Article and Find Full Text PDF

Congenital nephrogenic diabetes insipidus (CNDI) is a genetic disorder caused by mutations in arginine vasopressin receptor 2 () or aquaporin 2 genes, rendering collecting duct cells insensitive to the peptide hormone arginine vasopressin stimulation for water reabsorption. This study reports a first identified mutation in Taiwan and demonstrates our effort to understand the pathogenesis caused by applying computational structural analysis tools. The CNDI condition of an 8-month-old male patient was confirmed according to symptoms, family history, and DNA sequence analysis.

View Article and Find Full Text PDF

Chemokine receptor CXCR4 is a major drug target for numerous diseases because of its involvement in the regulation of cell migration and the developmental process. In this study, atomic-level molecular dynamics simulations were used to determine the activation mechanism and internal water formation of CXCR4 in complex with chemokine CXCL12 and G-protein. The results indicated that CXCL12-bound CXCR4 underwent transmembrane 6 (TM6) outward movement and a decrease in tyrosine toggle switch by eliciting the breakage of hydrophobic layer to form a continuous internal water channel.

View Article and Find Full Text PDF

Objective: Human interleukin-10 (IL-10) is a dimeric and pleiotropic cytokine that plays a crucial role in cellular immunoregulatory responses. As IL-10 binds to its receptors, IL-10Ra and IL-10Rb, it will suppress or induce the downstream cellular immune responses to protect from diseases.

Materials And Methods: In this study, a potential peptide derived from IL-10 based on molecular docking and structural analysis was designed and validated by a series of cell assays to block IL-10 binding to receptor IL-10Ra for the inhibition of cell growth.

View Article and Find Full Text PDF

Chronic inflammation is a pivotal event in the pathogenesis of cardiovascular diseases, including atherosclerosis, restenosis, and coronary artery disease. The efficacy of current treatment or preventive strategies for such inflammation is still inadequate. Thus, new anti-inflammatory strategies are needed.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) is a species-specific pathogenic virus that infects only humans and chimpanzees. Previous studies have indicated that interactions between the HCV E2 protein and CD81 on host cells are required for HCV infection. To determine the crucial factors for species-specific interactions at the molecular level, this study employed in silico molecular docking involving molecular dynamic simulations of the binding of HCV E2 onto human and rat CD81s.

View Article and Find Full Text PDF

Chemokine CXCL8 is crucial for regulation of inflammatory and immune responses via activating its cognate receptor CXCR1. In this study, molecular docking and binding free energy calculations were combined to predict the initial binding event of CXCL8 to CXCR1 for peptide drug design. The simulations reveal that in the initial binding, the N-loop of CXCL8 interacts with the N-terminus of CXCR1, which is dominated by electrostatic interactions.

View Article and Find Full Text PDF

Polycomb-group proteins mark specific chromatin conformations in embryonic and somatic stem cells that are critical for maintenance of their "stemness". These proteins also mark altered chromatin modifications identified in various cancers. In normal differentiated cells or advanced cancerous cells, these polycomb-associated loci are frequently associated with increased DNA methylation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioneh5sqjrv16j6lpjc9pe0ro4iulf7g61q): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once