Publications by authors named "Chun-Chih Tseng"

Article Synopsis
  • - Myelodysplastic syndromes (MDS) are diverse blood disorders primarily affecting individuals over 60, characterized by low blood cell counts and a heightened risk of progressing to acute myeloid leukemia (AML).
  • - Over 50% of MDS cases involve early mutations in splicing factor genes such as SF3B1, SRSF2, U2AF1, and ZRSR2, which disrupt normal pre-mRNA splicing and contribute to the disease's development.
  • - New research indicates that cells with splicing factor mutations are particularly vulnerable to treatments that target the spliceosome and related pathways, leading to ongoing investigations of these strategies for MDS therapy.
View Article and Find Full Text PDF

Periodic patterning requires coordinated cell-cell interactions at the tissue level. Turing showed, using mathematical modeling, how spatial patterns could arise from the reactions of a diffusive activator-inhibitor pair in an initially homogeneous 2D field. Most activators and inhibitors studied in biological systems are proteins, and the roles of cell-cell interaction, ions, bioelectricity, etc.

View Article and Find Full Text PDF

Periodic patterning requires coordinated cell-cell interactions at the tissue level. Turing showed, using mathematical modeling, how spatial patterns could arise from the reactions of a diffusive activator-inhibitor pair in an initially homogenous two-dimensional field. Most activators and inhibitors studied in biological systems are proteins, and the roles of cell-cell interaction, ions, bioelectricity, etc.

View Article and Find Full Text PDF

The extreme versatility of van der Waals materials originates from their ability to exhibit new electronic properties when assembled in close proximity to dissimilar crystals. For example, although graphene is inherently nonmagnetic, recent work has reported a magnetic proximity effect in graphene interfaced with magnetic substrates, potentially enabling a pathway toward achieving a high-temperature quantum anomalous Hall effect. Here, we investigate heterostructures of graphene and chromium trihalide magnetic insulators (CrI, CrBr, and CrCl).

View Article and Find Full Text PDF

Tuning the properties of atomic crystals in the two-dimensional (2D) limit is synthetically challenging, but critical to unlock their potential in fundamental research and nanotechnology alike. 2D crystals assembled using superatomic blocks could provide a route to encrypt desirable functionality, yet strategies to link the inorganic blocks together in predetermined dimensionality or symmetry are scarce. Here, we describe the synthesis of anisotropic van der Waals crystalline frameworks using the designer superatomic nanocluster Co(py)CoSeL (py = pyridine, L = PhPN(Tol)), and ditopic linkers.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 global pandemic, utilizes the host receptor angiotensin-converting enzyme 2 (ACE2) for viral entry. However, other host factors might also play important roles in SARS-CoV-2 infection, providing new directions for antiviral treatments. GRP78 is a stress-inducible chaperone important for entry and infectivity for many viruses.

View Article and Find Full Text PDF

GRP78 conducts protein folding and quality control in the ER and shows elevated expression and cell surface translocation in advanced tumors. However, the underlying mechanisms enabling GRP78 to exert novel signaling functions at cell surface are just emerging. CD44 is a transmembrane protein and an important regulator of cancer metastasis, and isoform switch of CD44 through incorporating additional variable exons to the extracellular juxtamembrane region is frequently observed during cancer progression.

View Article and Find Full Text PDF

Translocation of 78-kDa glucose-regulated protein (GRP78) from endoplasmic reticulum (ER) to plasma membrane represents a paradigm shift beyond its traditional function as an ER chaperone protein. Cell surface GRP78 (csGRP78) exerts novel signaling functions, and mechanisms underlying its cell surface expression are just emerging. Acquired tamoxifen resistance of breast cancer cells is accompanied with elevated level of csGRP78.

View Article and Find Full Text PDF

Collective cell migration mediates multiple tissue morphogenesis processes. Yet how multi-dimensional mesenchymal cell movements are coordinated remains mostly unknown. Here we report that coordinated mesenchymal cell migration during chicken feather elongation is accompanied by dynamic changes of bioelectric currents.

View Article and Find Full Text PDF

Glucose-regulated protein (GRP78)/BiP, a major chaperone in the endoplasmic reticulum, is recently discovered to be preferably expressed on the surface of stressed cancer cells, where it regulates critical oncogenic signaling pathways and is emerging as a target for anti-cancer therapy while sparing normal organs. However, because GRP78 does not contain classical transmembrane domains, its mechanism of transport and its anchoring at the cell surface are poorly understood. Using a combination of biochemical, mutational, FACS, and single molecule super-resolution imaging approaches, we discovered that GRP78 majorly exists as a peripheral protein on plasma membrane via interaction with other cell surface proteins including glycosylphosphatidylinositol-anchored proteins.

View Article and Find Full Text PDF

Traditionally, GRP78 has been regarded as an endoplasmic reticulum (ER) lumenal protein due to its carboxyl KDEL retention motif. Recently, a subfraction of GRP78 is found to localize to the surface of specific cell types, serving as co-receptors and regulating signaling. However, the physiological relevance of cell surface GRP78 (sGRP78) expression in cancer and its functional interactions at the cell surface are just emerging.

View Article and Find Full Text PDF

Unlabelled: Liver cancer is one of the most common solid tumors, with poor prognosis and high mortality. Mutation or deletion of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is strongly correlated with human liver cancer. Glucose-regulated protein 94 (GRP94) is a major endoplasmic reticulum (ER) chaperone protein, but its in vivo function is still emerging.

View Article and Find Full Text PDF

We have previously reported that acute inducible knockout of the endoplasmic reticulum chaperone GRP94 led to an expansion of the hematopoietic stem and progenitor cell pool. Here, we investigated the effectors and mechanisms for this phenomenon. We observed an increase in AKT activation in freshly isolated GRP94-null HSC-enriched Lin(-) Sca-1(+) c-Kit(+) (LSK) cells, corresponding with higher production of PI(3,4,5)P3, indicative of PI3K activation.

View Article and Find Full Text PDF

Traditionally, GRP78 is regarded as protective against hypoxia and nutrient starvation prevalent in the microenvironment of solid tumors; thus, its role in the development of hematologic malignancies remains to be determined. To directly elucidate the requirement of GRP78 in leukemogenesis, we created a biallelic conditional knockout mouse model of GRP78 and PTEN in the hematopoietic system. Strikingly, heterozygous knockdown of GRP78 in PTEN null mice is sufficient to restore the hematopoietic stem cell population back to the normal percentage and suppress leukemic blast cell expansion.

View Article and Find Full Text PDF