Publications by authors named "Chun Sing Lee"

A new aggregation-induced emission (AIE) luminogen is obtained by dimerizing acridin-9(10H)-one (Ac), an aggregation-caused quenching (ACQ) effect monomer via an N─N bond and forming 9H,9'H-[10,10'-biacridine]-9,9'-dione (DiAc) with D symmetry. The quenching of DiAc in solution is ascribed to the enhanced basicity promoting hydrogen bonding and then a hydrogen abstraction (HA) reaction and/or an unallowed transition in frontier orbitals with the same symmetry facilitating intersystem crossing. It is found that emissive Ac is one product of the non-emissive DiAc solution in the HA reaction activated by UV irradiation.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed a novel electron transport layer using BHT@ZnO nanoparticles that enhances the efficiency and stability of inverted organic photovoltaic (OPV) devices, reaching a record efficiency of 19.47%.
  • The new device exhibits impressive long-term stability, retaining over 94% of its power conversion efficiency (PCE) after 8904 hours under ambient conditions and 81.5% after 7724 hours in maximum power point testing.
  • The study also reveals key mechanisms of light-induced degradation in OPVs, detailing how specific radicals attack different components, which may help in advancing OPV technology for commercialization.
View Article and Find Full Text PDF

The incorporation a "singlet oxygen (O) battery" into photodynamic therapy (PDT) could overcome the deficiency of tumor hypoxia in PDT and enhance its effect. However, real-time monitoring the O release efficiency of the O battery still presents a significant challenge in vivo. To address this issue, we have developed a bright aggregation-induced emission (AIE) chemiluminescence (CL) probe (DTLum), which conjugates a luminol unit with a donor-acceptor structured diketopyrrolopyrrole fluorophore, for the specific detection of O.

View Article and Find Full Text PDF
Article Synopsis
  • - Sodium-ion batteries (SIBs) face challenges like slow reaction rates, significant volume changes, and low capacity due to sodium's large size.
  • - The study introduces a covalent organic framework (COF) called CityU-33, which is designed to be used as an electrode material for SIBs.
  • - CityU-33 exhibited excellent performance, achieving a high discharge capacity of 410.4 mAh/g and maintaining 97% capacity over 2000 cycles, establishing it as a leading COF for SIB applications.
View Article and Find Full Text PDF

Understanding precise structures of two-/three- dimensional (2D/3D) covalent organic polymers (COPs) through single-crystal X-ray diffraction (SCXRD) analysis is important. However, how to grow high-quality single crystals for 2D/3D COPs is of challenge due to poor reversibility and difficult self-correction of covalent bonds. In addition, the success of introducing tellurium into the backbone to construct 2D/3D COPs and obtaining their single crystals is rare.

View Article and Find Full Text PDF

Among type I photosensitizers, stable organic radicals are superior candidate molecules for hypoxia-overcoming photodynamic therapy. However, their wide applications are limited by complicated preparation processes and poor stabilities. Herein, a nitroxide radical was simply synthesized by introducing a commercially available "TEMPO" moiety.

View Article and Find Full Text PDF

Tin halide perovskites are the most promising candidate materials for lead-free perovskite solar cells (PSCs) thanks to their low toxicity and ideal band gap energies. The introduction of 2D/3D mixed perovskite phases in tin-based PSCs (TPSCs) has proven to be the most effective approach to improving device efficiency and stability. However, a 2D perovskite phase normally shows relatively low carrier mobility, which will be unfavorable for carrier transfer in the devices.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the presence of an electric field in twisted-bilayer molybdenum disulfide (MoS) and its connection to local polar domains using advanced imaging techniques and computational methods.
  • It uncovers the formation of in-plane topological vortices in structured patterns at different twist angles, particularly at small angles and a 30° twist, which generates intricate chiral vortex designs.
  • The research emphasizes that manipulating the twist in 2D bilayers opens up new possibilities for controlling electric polar vortices at a very small scale.
View Article and Find Full Text PDF

Constructing J-aggregated organic dyes represents a promising strategy for obtaining biomedical second near-infrared (NIR-II) emissive materials, as they exhibit red-shifted spectroscopic properties upon assembly into nanoparticles (NPs) in aqueous environments. However, currently available NIR-II J-aggregates primarily rely on specific molecular backbones with intricate design strategies and are susceptible to fluorescence quenching during assembly. A facile approach for constructing bright NIR-II J-aggregates using prevalent donor-acceptor (D-A) molecules is still lacking.

View Article and Find Full Text PDF
Article Synopsis
  • Hypocrellin B (HB) is a natural photosensitizer with benefits like high phototoxicity and low dark toxicity, but its lack of tumor specificity limits clinical use.
  • A new photosensitizer was developed by combining HB with a group called 7-nitro-2,1,3-benzoxadiazole (NBD), which helps activate it in the presence of glutathione (GSH).
  • The HB-NBD photosensitizer remains inactive in terms of fluorescence and oxygen generation until GSH is present, allowing it to potentially target and treat cancer more effectively.
View Article and Find Full Text PDF

Interfacial charge-transfer between perovskite and charge-transport layers plays a key role in determining performance of perovskite solar cells. The conventional viewpoint emphases the necessity of favorable energy-level alignment of the two components. In recent reports, efficient electron-transfer is observed from perovskite to fullerene-based electron-transport layers even when there are unfavorable energy-level alignments, but the mechanism is still unclear.

View Article and Find Full Text PDF

Extending covalent organic frameworks (COFs) into crystalline carbon-free covalent backbones is an important strategy to endow these materials with more exotic functions. Integrating metal-free inorganic and organic components into one covalent framework is an effective way to address the issue of poor thermal/solvent stability in the field of nonlinear optics (NLO). However, constructing such structures is very challenging.

View Article and Find Full Text PDF

Perylenequinonoid natural products are a class of photosensitizers (PSs) that exhibit high reactive oxygen species (ROS) generation and excellent activity for Type I/Type II dual photodynamic therapy. However, their limited activity against gram-negative bacteria and poor water solubility significantly restrict their potential in broad-spectrum photodynamic antimicrobial therapy (PDAT). Herein, a general approach to overcome the limitations of perylenequinonoid photosensitizers (PQPSs) in PDAT by utilizing a macrocyclic supramolecular carrier is presented.

View Article and Find Full Text PDF

The synthesis, crystal structure and room-temperature phosphorescence (RTP) of a 2D metal-free inorganic covalent framework ((Hen) [BO(OH)], named as CityU-12, and en represents for ethylenediamine) are reported. The precise structure information of CityU-12 has been disclosed through both single-crystal X-ray diffraction (SCXRD) analysis and low-dose high-resolution transmission electron microscopy (LD-HRTEM) study. The SCXRD results show that CityU-12 composes of 2D anionic B─O-based covalent inorganic frameworks with protonated ethylenediamine locating in the pore sites of 2D B─O layers while LD-HRTEM suggests that CityU-12 has an interplanar distance of 0.

View Article and Find Full Text PDF

The multiple mortise-and-tenon joint parts are the core factors to provide the structural stability and diversity of Chinese Luban locks; however, constructing such structures is very challenging. Herein, single crystals of a covalent organic nanoribbon (named CityU-27) are prepared through the assembly of hexahydroxytriphenylene (HHTP), 4,4'-vinylenedipyridine (BYE), and phenylboronic acid (BA) together through dative boron←nitrogen (B←N) bonds. The single-crystal X-ray diffraction analysis indicates that CityU-27 has a covalent organic nanoribbon structure, where each nanoribbon forms multiple and tight π-π interactions with four neighboring others to generate a Luban lock-like configuration.

View Article and Find Full Text PDF

A piezoelectric polymer membrane based on single metal atoms was demonstrated to be effective by anchoring isolated calcium (Ca) atoms on a composite of nitrogen-doped carbon and polyvinylidene fluoride (PVDF). The addition of Ca-atom-anchored carbon nanoparticles not only promotes the formation of the β phase (from 29.8 to 56.

View Article and Find Full Text PDF

Fluorescence imaging (FLI)-guided phototheranostics using emission from the second near-infrared (NIR-II) window show significant potential for cancer diagnosis and treatment. Clinical imaging-used polymethine ionic indocyanine green (ICG) dye is widely adopted for NIR fluorescence imaging-guided photothermal therapy (PTT) research due to its exceptional photophysical properties. However, ICG has limitations such as poor photostability, low photothermal conversion efficiency (PCE), short-wavelength emission peak, and liver-targeting issues, which restrict its wider use.

View Article and Find Full Text PDF

Tin (Sn) -based perovskite solar cells (PSCs) normally show low open circuit voltage due to serious carrier recombination in the devices, which can be attributed to the oxidation and the resultant high p-type doping of the perovskite active layers. Considering the grand challenge to completely prohibit the oxidation of Sn-based perovskites, a feasible way to improve the device performance is to counter-dope the oxidized Sn-based perovskites by replacing Sn with trivalent cations in the crystal lattice, which however is rarely reported. Here, the introduction of Sb, which can effectively counter-dope the oxidized perovskite layer and improve the carrier lifetime, is presented.

View Article and Find Full Text PDF

Deep-blue multi-resonance (MR) emitters with stable and narrow full-width-at-half-maximum (FWHM) are of great importance for widening the color gamut of organic light-emitting diodes (OLEDs). However, most planar MR emitters are vulnerable to intermolecular interactions from both the host and guest, causing spectral broadening and exciton quenching in thin films. Their emission in the solid state is environmentally sensitive, and the color purity is often inferior to that in solutions.

View Article and Find Full Text PDF

Inspired by dative boron-nitrogen (B←N) bonds proven to be the promising dynamic linkage for the construction of crystalline covalent organic polymers/frameworks (COPs/COFs), we employed 1,4-bis(benzodioxaborole) benzene (BACT) and N,N'-Di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxdiimide (DPNTCDI) as the corresponding building blocks to construct a functional COP (named as CityU-25), which had been employed as an anode in rechargeable lithium ion batteries. CityU-25 displayed an excellent reversible lithium storage capability of 455 mAh/g after 170 cycles at 0.1 A/g, and an impressive one of 673 mAh/g after 720 cycles at 0.

View Article and Find Full Text PDF

Unconventional 1T'-phase transition metal dichalcogenides (TMDs) have aroused tremendous research interest due to their unique phase-dependent physicochemical properties and applications. However, due to the metastable nature of 1T'-TMDs, the controlled synthesis of 1T'-TMD monolayers (MLs) with high phase purity and stability still remains a challenge. Here we report that 4H-Au nanowires (NWs), when used as templates, can induce the quasi-epitaxial growth of high-phase-purity and stable 1T'-TMD MLs, including WS, WSe, MoS and MoSe, via a facile and rapid wet-chemical method.

View Article and Find Full Text PDF

Precise control of cellular signaling events during programmed cell death is crucial yet challenging for cancer therapy. The modulation of signal transduction in cancer cells holds promise but is limited by the lack of efficient, biocompatible, and spatiotemporally controllable approaches. Here we report a photodynamic strategy that modulates both apoptotic and pyroptotic cell death by altering caspase-3 protein activity and the associated signaling crosstalk.

View Article and Find Full Text PDF

Aqueous dual-ion batteries (ADIBs) based on the cooperative redox of cations and iodine anions at the anode and cathode respectively, are attracting increasing interest because of high capacity and safety. However, the full-cell performance is limited by the sluggish iodine redox kinetics between iodide and polyiodide involving multiple electron transfer steps, and the undesirable shuttling effect of polyiodides. Here, this work reports a versatile conjugated microporous polymer functionalized with secondary amine groups as an organocatalytic cathode for ADIB, which can be positively charged and electrostatically adsorb iodide, and organocatalyze iodine redox reactions through the amine groups.

View Article and Find Full Text PDF

The controllable photocatalytic C-C coupling of methanol to produce ethylene glycol (EG) is a highly desirable but challenging objective for replacing the current energy-intensive thermocatalytic process. Here, we develop a metal-free porous boron nitride catalyst that demonstrates exceptional selectivity in the photocatalytic production of EG from methanol under mild conditions. Comprehensive experiments and calculations are conducted to thoroughly investigate the reaction mechanism, revealing that the OB unit in the porous BN plays a critical role in the preferential activation of C-H bond in methanol to form ⋅CHOH via a concerted proton-electron transfer mechanism.

View Article and Find Full Text PDF