Publications by authors named "Chun Lv"

Article Synopsis
  • The blasting block size in open-pit mines is affected by various complex factors, making traditional prediction methods inadequate for ensuring safety.
  • A new prediction model is established using data from the Beskuduk open-pit coal mine, incorporating factors like rock strength and blast hole spacing, with kernel principal component analysis (KPCA) and the beetle antennae search algorithm (BAS) to optimize neural network parameters.
  • The resulting model demonstrates high accuracy in predicting blasting fragmentation, with a 1.77% average relative error, outperforming previous models and contributing valuable insights for practical applications in mining operations.
View Article and Find Full Text PDF

The early strength of geopolymers (GPs) and their composites is higher, and the hardening speed is faster than that of ordinary cementitious materials. Due to their wide source of raw materials, low energy consumption in the production process, and lower emissions of pollutants, they are considered to have the most potential to replace ordinary Portland cement. However, similar to other inorganic materials, the GPs themselves have weak flexural and tensile strength and are sensitive to micro-cracks.

View Article and Find Full Text PDF

Improving the humification of compost through a synergistic approach of biotic and abiotic methods is of great significance. This study employed a composite reagent, comprising Fenton-like agents and effective microorganisms (EM) to improve humification. This composite reagent increased humic-acid production by 37.

View Article and Find Full Text PDF

To study the long-term properties of cement-based and geopolymer materials exposed to outdoor environments, wet-dry cycles are usually used to accelerate their aging. The wet-dry cycling can simulate the effects of environmental factors on the long-term properties of the composites under natural conditions. Nowadays, the long-term properties of geopolymer materials are studied increasingly deeply.

View Article and Find Full Text PDF

Geopolymer (GP) is environmentally friendly, has good mechanical properties and long-term workability, and has broad application prospects. However, due to the poor tensile strength and toughness of GPs, they are sensitive to microcracks, which limits their application in engineering. Fiber can be added to GPs to limit the growth of cracks and enhance the toughness of the GP.

View Article and Find Full Text PDF

Plant fibers (PFs), such as hemp, Coir, and straw, are abundant in resources, low in price, light weight, biodegradable, have good adhesion to the matrix, and have a broad prospect as reinforcements. However, the degradation of PFs in the alkaline matrix is one of the main factors that affects the durability of these composites. PFs have good compatibility with cement and the geopolymer matrix.

View Article and Find Full Text PDF

Claudin 18.2 (CLDN18.2) is an emerging target for the treatment of gastric cancers.

View Article and Find Full Text PDF

The engineering applications and related researches of 3D printing fiber-reinforced geopolymers are becoming more and more extensive. However, compared with traditional mould-casted cement-based materials, the properties of 3D-printed fiber-reinforced geopolymers are significantly different, and their interlayer bonding and anisotropy effects are less studied, so in-depth analysis and summary are needed. Similar to common cement-based materials, the reinforcement fibers for geopolymers include not only traditional fibers, such as steel fibers and carbon fibers, but also synthetic polymer fibers and natural polymer fibers.

View Article and Find Full Text PDF

Both geopolymer and plant fiber (PF) meet the requirements of sustainable development. Geopolymers have the advantages of simple preparation process, conservation and environmental protection, high early strength, wide source of raw materials, and low cost. They have broad application prospects and are considered as the most potential cementitious materials to replace cement.

View Article and Find Full Text PDF

Geopolymers have the advantages of low carbon, being environmentally friendly and low price, which matches the development direction of building materials. Common geopolymer materials are also known as two-part geopolymers (TPGs). TPGs are usually prepared from two main substances, which are formed by polymerization of a silicoaluminate precursor and an alkaline activator solution.

View Article and Find Full Text PDF

Purpose: Ga-labeled fibroblast activation protein inhibitors, such as [Ga]Ga-DOTA-FAPI-04 and [Ga]Ga-DOTA-FAPI-46, have been successfully applied in positron emission tomography imaging of various tumor types. To broaden the PET tracers of different positron nuclides for imaging studies of FAP-dependent diseases, we herein report the radiosynthesis and preclinical evaluation of two C-labeled FAP inhibitors, C-RJ1101 and C-RJ1102.

Methods: Two phenolic hydroxyl precursors based on a quinoline amide core coupled with a 2-cyanopyrrolidine moiety were coupled with [C]CHI to synthesize C-RJ1101 and C-RJ1102.

View Article and Find Full Text PDF

The engineering applications and related research of fiber-reinforced cement and geopolymer mortar composites are becoming more and more extensive. These reinforced fibers include not only traditional steel fibers and carbon fibers, but also synthetic polymer fibers and natural polymer fibers. Polymer fiber has good mechanical properties, good bonding performance with cement and geopolymer mortars, and excellent performance of cracking resistance and reinforcement.

View Article and Find Full Text PDF

Geopolymers have high early strength, fast hardening speed and wide sources of raw materials, and have good durability properties such as high temperature resistance and corrosion resistance. On the other hand, there are abundant sources of plant or cellulose fibers, and it has the advantages of having a low cost, a light weight, strong adhesion and biodegradability. In this context, the geopolymer sector is considering cellulose fibers as a sustainable reinforcement for developing composites.

View Article and Find Full Text PDF

The dyeing process of soybean protein/flax blended yarns with reactive dyes (containing monofunctional or bifunctional groups) and the method of improving the color fastness of dyed yarns treated with an ecofriendly formaldehyde-free fixing agent were studied. Influence factors such as sodium carbonate concentration, salt concentration, fixation time and temperature were analyzed, the optimum processes to soybean protein/flax blended yarns dyed with the two reactive dyes were determined: the soybean protein/flax blended yarns were dyed with Reactive Yellow K-R at a bath to material ratio of 20:1, dye concentration 2% owf., sodium chloride 40 g/L, sodium carbonate 10 g/L, fixed at 85 °C for 30 min; and dyed with Reactive Yellow B-4RFN at a bath to material ratio of 20:1, dye concentration 2% owf.

View Article and Find Full Text PDF

Using potassium peroxodisulfate as an initiator and acrylic acid as a monomer, an acrylic acid oligomer was synthesized and then compounded with magnesium salt to form a non-silicone oxygen bleaching stabilizer. By investigating the effects of reaction temperature, reaction time, initiator concentration, monomer concentration, and magnesium salt dosage on product performance, the effect of stabilizers on linen yarn bleaching was analyzed. The synthetic conditions of oxygen bleaching stabilizer were determined by orthogonal test method, namely, acrylic acid monomer concentration 25%, initiator dosage 5%, oligomeric acrylic acid and magnesium salt compound ratio 5:1, reaction temperature 65 °C, reaction time 4 h.

View Article and Find Full Text PDF

Background: Ischemic stroke remains the leading cause of death and adult disability. Cerebral ischemic/reperfusion (I/R) injury is caused by ischemic stroke thereafter aggravates overwhelming neuronal apoptosis and even the death of neurons. Of note, hippocampus is more susceptive to cerebral I/R injury than the other brain region.

View Article and Find Full Text PDF

β-amyloid (Aβ) is one of the inducing factors of astrocytes activation and neuroinflammation, and it is also a crucial factor for the development of Alzheimer's disease (AD). Icariside II (ICS II) is an active component isolated from a traditional Chinese herb Epimedium, which has shown to attnuate lipopolysaccharide (LPS)-induced neuroinflammation through regulation of NF-κB signaling pathway. In this study we investigated the effects of ICS II on LPS-induced astrocytes activation and Aβ accumulation.

View Article and Find Full Text PDF

Oxidative stress-induced neuronal cell damage is a crucial factor in the pathogenesis of mitochondria-associated neurological diseases. Therefore, elimination of overproduction of mitochondrial reactive oxygen species (mtROS) may be a potential strategy for prevention and treatment of neurological diseases. In the present study, the neuroprotective effects of trilobatin (TLB), a novel small molecule monomer derived from Rehd, and its underlying mechanisms were investigated using hydrogen peroxide (HO)-induced oxidative stress model in a neuron-like PC12 cell.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-associated mortality worldwide, particularly in China. MicroRNAs (miRs) serve important roles in the pathogenesis of HCC. The present study investigated the function of miR-1271 in HCC.

View Article and Find Full Text PDF

In this study, the protective effects of monosaccharides (glucose and fructose) and sugar alcohols (mannitol, sorbitol, and xylitol) on frozen ram spermatozoa were evaluated and compared. The motility, moving velocity, and hypoosmotic swelling capability of spermatozoa frozen with monosaccharide or sugar alcohol were measured using a computer-assisted spermatozoa analyzer system. The acrosome status, membrane integrity, distribution of phosphatidylserine (PS), and mitochondrial membrane potential (MMP) were analyzed using fluorescence staining and flow cytometry.

View Article and Find Full Text PDF

In order to assess effects of vitrification on ovine oocytes at the germinal vesicle (GV) stage, the conventional plastic straw (CS), the open-pulled straw (OPS), and Cryoloop were used to vitrify ovine oocytes. Oocytes were randomly divided into five groups: (1) Control; (2) Oocytes exposed to vitrification and dilution solutions without any cryopreservation (toxicity); (3) Oocytes vitrified using CS (CS); (4) Oocytes vitrified using OPS (OPS), and (5) Oocytes vitrified using Cryoloop (Cryoloop). The viability, cumulus cell expansion, nuclear maturation after in vitro maturation (IVM), and developmental capability of vitrified oocytes following parthenogenetic activation (PA) or in vitro fertilization (IVF) were assessed.

View Article and Find Full Text PDF

Cytometric sorting of frozen-thawed sperm can overcome difficulties caused by the unavailability of sorting facilities on farms where semen is collected from male livestock. In order to optimize the cytometric sex-sorting procedure, effects of Hoechst33342 staining on the viability and cytometric sorting efficiency of frozen-thawed ram sperm were evaluated. The frozen-thawed sperm were stained with Hoechst33342 at various dye concentrations (80 μM, 120 μM, 160 μM, 200 μM, 240 μM, or 320 μM) for 45 min to evaluate effects of dye dose.

View Article and Find Full Text PDF

In this study, the fibroblasts cell line derived from ear marginal tissue of Yunnan semi-fine wool sheep was successfully established using the primary explants technique and cryopreservation technology. Additionally, the protective effect of synthetic ice blocker (SIB) including 1, 3-cyclohexanediol (1, 3-CHD) and 1, 4-cyclohexanediol (1, 4-CHD) on frozen fibroblast cells was also assessed and compared. Propidium iodide (PI) was used to stain the dead cells following cryopreservation and thawing.

View Article and Find Full Text PDF

Reactive nitrogen oxygen species (RNOS) contribute to the deleterious effects attributed to reacting with biomolecules. The mechanisms of the nitration and nitrosation of dimethylamine (DMA), which is the simplest secondary amine by N2O4, a member of RNOS, have been investigated at the CBS-QB3 level of theory. The nitration and nitrosation proceed via different pathways.

View Article and Find Full Text PDF