Prenatal opioid exposure might disturb epigenetic programming in the brain of neonatal offspring with various consequences for gene expressions and behaviors. This study determined whether altered trimethylation of histone 3 at lysine 4 (H3K4me3) in the promoter of the tumor necrosis factor- () gene with neural cell apoptosis was involved in the ventral-medial striatum, an important brain region for withdrawal symptoms, of neonatal rat offspring from morphine-addicted mothers. Female adult rats were injected with morphine before gestation and until 14 days after giving birth.
View Article and Find Full Text PDFThe activation of microglial cells plays an important role in the cascade of events leading to inflammation-mediated neurodegenerative disorders. Precision therapeutics require that adjunctively feasible drugs be found to prevent microglial cell activation and prevent inflammation-mediated neuronal injury. Dextromethorphan (DM) has been reported to possess neuroprotective effects in lipopolysaccharide- (LPS-) stimulated animals; however, it remains unclear whether epigenetic regulatory mechanisms in microglial cells are involved in such DM-mediated neuroprotective effects.
View Article and Find Full Text PDFPrenatal exposure to morphine causes altered glutamatergic neurotransmission, which plays an important pathophysiological role for neurobiological basis of opiate-mediated behaviors in such offspring. However, it is still not clear whether such alteration involves gene expression of ionotropic glutamate receptor subunits. In this study, we further studied whether prenatal morphine exposure resulted in long-term changes in the gene expression of -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, -methyl-d-aspartate (NMDA) receptor, and postsynaptic density 95 in the mesocorticolimbic area (an essential integration circuitry for drug craving behavior), nucleus accumbens (NAc), ventral tegmental area (VTA), and prefrontal cortex (PFC), of rat offspring from morphine-addicted mothers.
View Article and Find Full Text PDFBacterial meningitis during the perinatal period may cause long-term neurological deficits. The study investigated whether bacterial lipopolysaccharide (LPS) derived from led to neuronal apoptosis with an impaired performance of long-term cognitive function involving the activation of histone modification in the TNF- gene promoter. Further, we looked into the therapeutic efficacy of granulocyte colony-stimulating factor (G-CSF) in a neonatal brain suffering from perinatal bacterial meningitis.
View Article and Find Full Text PDFMuscle phosphofructokinase (PFK) deficiency is a rare autosomal recessive disease. We report the case of a preterm female infant who was diagnosed with the infantile form of phosphofructokinase deficiency due to a lack of PFK activity in her muscles, manifesting at a corrected age of 1 month as floppy infant syndrome, congenital joint contracture, cleft palate and duplication of the pelvicalyceal system. She died at a corrected age of 6 months due to respiratory failure.
View Article and Find Full Text PDFBackground: Perinatal hypoxia can lead to a wide range of neurological deficits depending on the differential vulnerability of the involved brain regions to oxygen deprivation. It remains unclear whether the differential vulnerability to oxygen deprivation leads to altered neurogenesis in the neonatal brain after perinatal hypoxia. The primary objective was to investigate whether perinatal hypoxia induces deleterious changes in neurogenesis within three representative brain regions (dentate gyrus of the hippocampus, midbrain, and temporal cortex), with regards to common pathological areas clinically.
View Article and Find Full Text PDFUsing various animal models, studies have greatly expanded our understanding of perinatal hypoxia-induced neuronal injury in the newborn at the cellular/molecular levels. However, the synapse-basis pathogenesis and therapeutic strategy for such detrimental alterations in the neonatal brain remain to be addressed. We investigated whether the damaged synaptic efficacy and neurogenesis within hippocampal CA1 region (an essential integration area for mammalian learning and memory) of the neonatal rat brain after perinatal hypoxia were restored by granulocyte-colony stimulating factor (G-CSF) therapy.
View Article and Find Full Text PDFAlthough prenatal morphine exposure experimentally induces seizures in rat offspring, underlying mechanisms remain unclear. This study addresses whether prenatal morphine exposure altered subunit compositions of γ-aminobutyric acid receptor subtype A (GABA(A)R) in the hippocampal CA1 area and temporal cortex and increased seizure susceptibility of young rat offspring, at a representative age (postneonatal days 14; P14). Therapeutic efficacy of dextromethorphan (a noncompetitive antagonist of N-methyl-d-aspartate receptors (NMDARs)), in such offspring was also evaluated.
View Article and Find Full Text PDFPurpose: Perinatal hypoxia is an important cause of brain injury in the newborn and has consequences that are potentially devastating and life-long, such as an increased risk of epilepsy in later life. The postsynaptic density (PSD) is a cytoskeletal specialization involved in the anchoring of neurotransmitter receptors and in regulating the response of postsynaptic neurons to synaptic stimulation. The postsynaptic protein PSD-95 binds to the N-methyl-D-aspartate receptor (NMDAR) subunit, and hence activates cascades of NMDAR-mediated events, such as cyclic adenosine monophosphate (cAMP)-responsive element binding protein phosphorylation at serine-133 (pCREB(Serine-133)).
View Article and Find Full Text PDF