Publications by authors named "Chumakov S"

Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy, particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes, including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-G glycoproteins.

View Article and Find Full Text PDF

CD47 acts as a defense mechanism for tumor cells by sending a "don't eat me" signal via its bond with SIRPα. With CD47's overexpression linked to poor cancer outcomes, its pathway has become a target in cancer immunotherapy. Though monoclonal antibodies offer specificity, they have limitations like the large size and production costs.

View Article and Find Full Text PDF

Amphipathic perylene derivatives are broad-spectrum antivirals against enveloped viruses that act as fusion inhibitors in a light-dependent manner. The compounds target the lipid bilayer of the viral envelope using the lipophilic perylene moiety and photogenerating singlet oxygen, thereby causing damage to unsaturated lipids. Previous studies show that variation of the polar part of the molecule is important for antiviral activity.

View Article and Find Full Text PDF

Ribosomal frameshifting (RFS) at the slippery site of SARS-CoV-2 RNA is essential for the biosynthesis of the viral replication machinery. It requires the formation of a pseudoknot (PK) structure near the slippery site and can be inhibited by PK-disrupting oligonucleotide-based antivirals. We obtained and compared three types of such antiviral candidates, namely locked nucleic acids (LNA), LNA-DNA gapmers, and G-clamp-containing phosphorothioates (CPSs) complementary to PK stems.

View Article and Find Full Text PDF

Countering the spread of new respiratory infections and reducing the damage they cause to society requires efficient strategies for rapidly developing of targeted therapeutics, such as monoclonal antibodies. Nanobodies, defined as variable fragments of heavy-chain camelid antibodies, have a set of characteristics that make them particularly convenient for this purpose. The speed at which the SARS-CoV-2 pandemic spread confirmed that the key factor in the development of therapeutics is obtaining highly effective blocking agents as soon as possible, as well as the diversity of epitopes to which these agents bind.

View Article and Find Full Text PDF

Amphipathic nucleoside and non-nucleoside derivatives of pentacyclic aromatic hydrocarbon perylene are known as potent non-cytotoxic broad-spectrum antivirals. Here we report 3-methyl-5-(perylen-3-ylethynyl)-uracil-1-acetic acid and its amides, a new series of compounds based on a 5-(perylen-3-ylethynyl)-uracil scaffold. The compounds demonstrate pronounced in vitro activity against arthropod-borne viruses, namely tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV), in plaque reduction assays with EC values below 1.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is one of the most appealing photonic modalities for cancer treatment based on anticancer activity of light-induced photosensitizer-mediated reactive oxygen species (ROS), but a limited depth of light penetration into tissues does not make possible the treatment of deep-seated neoplasms and thus complicates its widespread clinical adoption. Here, we introduce the concept of genetically encoded bioluminescence resonance energy transfer (BRET)-activated PDT, which combines an internal light source and a photosensitizer (PS) in a single-genetic construct, which can be delivered to tumors seated at virtually unlimited depth and then triggered by the injection of a substrate to initiate their treatment. To illustrate the concept, we engineered genetic NanoLuc-miniSOG BRET pair, combining NanoLuc luciferase flashlight and phototoxic flavoprotein miniSOG, which generates ROS under luciferase-substrate injection.

View Article and Find Full Text PDF

CAR-T cell therapy is the most advanced way to treat therapy resistant hematologic cancers, in particular B cell lymphomas and leukemias, with high efficiency. Donor T cells equipped with chimeric receptor recognize target tumor cells and kill them using lytic granules. CAR-T cells that recognize CD19 marker of B cells (CD19 CAR-T) are considered the gold standard of CAR-T therapy and are approved by FDA.

View Article and Find Full Text PDF

Many members of the enterovirus family are considered as promising oncolytic agents; however, their systemic administration is largely inefficient due to the rapid neutralization of the virus in the circulation and the barrier functions of the endothelium. We aimed to evaluate natural killer cells as carriers for the delivery of oncolytic enteroviruses, which would combine the effects of cell immunotherapy with virotherapy. We tested four strains of nonpathogenic enteroviruses against the glioblastoma cell line panel and evaluated the produced infectious titers.

View Article and Find Full Text PDF

Background: Identification of complex multidimensional interaction patterns within microbial communities is the key to understand, modulate, and design beneficial microbiomes. Every community has members that fulfill an essential function affecting multiple other community members through secondary metabolism. Since microbial community members are often simultaneously involved in multiple relations, not all interaction patterns for such microorganisms are expected to exhibit a visually uninterrupted pattern.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are the most malignant subpopulation of tumor cells that possess a tumorigenic potential and resistantance to chemotherapy. These properties make CSCs a promising target for the development of targeted antitumor therapy which is especially in demand in highly aggressive cancers. However, the correct identification of cancer cells with stem properties remains a challenge.

View Article and Find Full Text PDF

RIL/PDLIM4 gene was identified as a tumor suppressor, its expression is frequently altered in various types of malignancies. The product of RIL/PDLIM4 gene is an adapter protein involved in the actin cytoskeleton remolding and assembly of stress fibers crucial for cell motility and epithelial-mesenchymal transition. Although the exact mechanism tethering RIL to cancer development remains unknown some pieces of evidence suggest that RIL may act by suppressing activation of the proto-oncogene tyrosine-protein kinase Src.

View Article and Find Full Text PDF

Gene expression responses to glucocorticoid (GC) in the hours preceding onset of apoptosis were compared in three clones of human acute lymphoblastic leukemia CEM cells. Between 2 and 20h, all three clones showed increasing numbers of responding genes. Each clone had many unique responses, but the two responsive clones showed a group of responding genes in common, different from the resistant clone.

View Article and Find Full Text PDF

Stable red fluorescing line of human ovarian epithelial cancer cells SK-OV-3ip-red was generated expressing gene coding for protein TurboFP635 (Katushka) fluorescing in the far-red spectrum region with excitation and emission peaks at 588 and 635 nm, respectively. Fluorescence of SK-OV-3ip-red line remained high during long-term cell culturing and after cryogenic freezing. The obtained cell line SK-OV-3ip-red can serve a basis for a model of a scattered tumor with numerous/extended metastases and used both for testing anticancer drugs inhibiting metastasis growth and for non-invasive monitoring of the growth dynamics with high precision.

View Article and Find Full Text PDF

In nonpolar solvents, hydrophobic organic fluorophores often show bright fluorescence, whereas in polar media, they usually suffer from aggregation-caused quenching (ACQ). Here, we harnessed this solvatochromic behavior of a 1,3,5,7-tetramethyl-BODIPY derivative for cell staining and applied it to live-cell imaging and flow cytometry. As opposed to commercially available dyes, this BODIPY derivative showed excellent contrast immediately after staining and did not require any wash-off.

View Article and Find Full Text PDF

Recently, a number of new highly efficient antibody-based anticancer therapeutics have emerged. These receptor-binding antibodies have beneficial toxicity profiles associated with relatively mild side effects. Therefore, the search for novel surface proteins that are present on cancer cells and play important metabolic or defensive roles has intensified.

View Article and Find Full Text PDF

In this study, we investigated the possibility of phototoxic flavoprotein miniSOG (photosensitizer) excitation in cancer cells by bioluminescence occurring when luciferase NanoLuc oxidizes its substrate, furimazine. We have shown that the phototoxic flavoprotein miniSOG expressed in eukaryotic cells in fusion with NanoLuc luciferase is activated in the presence of its substrate, furimazine. Upon such condition, miniSOG possesses photoinduced cytotoxicity and causes a 48% cell death level in a stably transfected cell line.

View Article and Find Full Text PDF

Background: Low-abundance mutations in mitochondrial populations (mutations with minor allele frequency ≤ 1%), are associated with cancer, aging, and neurodegenerative disorders. While recent progress in high-throughput sequencing technology has significantly improved the heteroplasmy identification process, the ability of this technology to detect low-abundance mutations can be affected by the presence of similar sequences originating from nuclear DNA (nDNA). To determine to what extent nDNA can cause false positive low-abundance heteroplasmy calls, we have identified mitochondrial locations of all subsequences that are common or similar (one mismatch allowed) between nDNA and mitochondrial DNA (mtDNA).

View Article and Find Full Text PDF

High heterogeneity is characteristic of oncology diseases, often complicating the choice of optimal anticancer treatment. One cancer type may combine tumors differing in histogenesis, genetic lesions, and mechanism of cell transformation. Differences in the mechanism of cell malignant transformation result in specifics of cancer cell metabolism and sensitivity to various agents, including anticancer treatments.

View Article and Find Full Text PDF

Cancer therapeutics based on protein biomolecules that exhibit selective toxic of inhibiting effects towards tumor cells without affecting normal tissue, are gaining extensive attention in cancer research. This heterogenous group of proteins consists of several subgroups, among them, are engineered cancer antigen-specific antibodies that suppress tumor growth by blocking proliferation-inducing receptors, or by direct action of a covalently attached toxin. Another subgroup of anticancer proteins that also represents promising potential therapeutic agents is oncotoxic proteins that can selectively trigger proapoptotic signaling in cancer cells.

View Article and Find Full Text PDF

The NCI-60 human tumor cell line panel has been used in a broad range of cancer research over the last two decades. A landmark 2013 whole exome sequencing study of this panel added an exceptional new resource for cancer biologists. The complementary analysis of the sequencing data produced by this study suggests the presence of Propionibacterium acnes genomic sequences in almost half of the datasets, with the highest abundance in the leukemia (RPMI-8226) and central nervous system (SF-295, SF-539, and SNB-19) cell lines.

View Article and Find Full Text PDF

Association and degradation of protein complexes play essential role in a majority of normal and pathologic processes, which take place in living cell. Studying the underlying mechanisms of those interactions would give deeper understanding of specific causes of disease progression and would allow developing new therapeutic strategies. The majority of technical approaches currently used for detecting protein association include in vitro protein extraction and purification, whereas more relevant results require methods that can be used in vivo.

View Article and Find Full Text PDF

Separation of processes of DNA replication and transcription from protein synthesis, which occurs in eukaryotic cells, allows more precise control over these processes. Selective exchange of macromolecules between these two compartments is mediated by proteins of nuclear pore complex (NPC). Receptor proteins of karyopherin family interact with NPC components and transfer their cargos between nucleus and cytoplasm.

View Article and Find Full Text PDF

Gene silencing based on RNA interference is widely used in fundamental research and in practical applications. However, a commonly incomplete functional suppression represents a serious drawback of this technology. We describe a series of lentiviral vectors each containing a single or multiple shRNA-expression cassette(s) driven by a RNA-polymerase III specific promoter and localized within the 3'-LTR of the lentiviral DNA backbone.

View Article and Find Full Text PDF

Separation of DNA replication and transcription, which occur in the nucleus, from protein synthesis, which occurs in the cytoplasm, allows a more precise regulation of these processes. Selective exchange of macromolecules between the two compartments is mediated by proteins of the nuclear pore complex (NPC). Receptor proteins of the karyopherin family interact with NPC components and transfer their cargos between the nucleus and cytoplasm.

View Article and Find Full Text PDF