Publications by authors named "Chuma Okere"

Nitrergic neurons of the dorsal raphe nucleus (DRN) may play a role in physiological stress responses. The caudal lateral wings (CLW) are unique compared to other rostral-caudal DRN sub-regions because they contain distinct nitric oxide (NO) synthase (NOS) populations that are independent of tryptophan hydroxylase (TPH). NOS neurons in the CLW are also highly activated during acute restraint stress.

View Article and Find Full Text PDF

The dorsal raphe nucleus (DRN), a major source of forebrain serotonin, mediates various neural functions including anxiety. The nucleus locus coeruleus (LC) is likewise involved in mediating central components of the stress response and anxiety. An anxiety-reducing effect is widely believed to underlie many cases of nicotine dependence.

View Article and Find Full Text PDF

The formation of an olfactory recognition memory by female mice for the stud male pheromones requires two fundamental conditions: incidence of mating and retention of the stud male with the female for a critical 6h interval following mating. This biologically critical recognition memory results from plasticity of reciprocal dendrodendritic synapses in the accessory olfactory bulb (AOB). In this study, a microglia marker antibody (ionized calcium-binding adaptor protein, Iba1) was used to determine how mating and stud pheromones affect microglia in the AOB rostrocaudal axis in female mice.

View Article and Find Full Text PDF

The periaqueductal gray (PAG) is important for the organization of organismal response to different types of stress and painful stimuli. Its dorsolateral (dlPAG) column is distinctly characterized by the presence of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), which in many brain regions, is an indication of constitutive nitric oxide (NO) synthase (NOS)-containing neurons. Different stress paradigms activate the dlPAG NOS machinery presumably by a presynaptic influence of NO on dlPAG neurons to modulate the nuclear dynamics to elicit an appropriate response.

View Article and Find Full Text PDF

The brainstem dorsal raphe nucleus (DRN) maintains a rough topographic cell ordering with respect to biological function. This study examined the influence of acute restraint on nitric oxide (NO) synthase (NOS) neurons in distinct DRN subregions. NADPH diaphorase staining (NOS index) intensity was higher in the DRN dorsomedial, ventromedial and lateral wings subregions of restrained vs.

View Article and Find Full Text PDF

The mesencephalic dorsolateral periaqueductal gray (dlPAG) mediates different modalities of aversive behaviors including pain and nociception and is anatomically delineated from other columns of the PAG by its content of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d). In many brain regions, neuronal NADPH-d is a nitric oxide (NO) synthase (NOS) and NO production mediates many nociceptive and aversive behavioral responses. The aim of this study was to determine how the noxious stimulant capsaicin affects intracellular dynamics in the dlPAG evidenced by Fos protein immunoreactivity (index of intracellular activation) and the NADPH-d reactivity.

View Article and Find Full Text PDF

The brainstem dorsal raphe nucleus (DRN) contains an abundant distribution of nitric oxide (NO) synthase (NOS)-containing neuronal profiles in two distinct populations: faint- and intense-immunoreactive cells in midline (ventromedial and dorsomedial) and lateral wing subregions, respectively. This study tested the hypothesis that different functional dynamics underlie the topography of NOS-containing cells in the DRN rostrocaudal and mediolateral neuraxis by using a capsaicin challenge paradigm (50 mg/kg, subcutaneous). Compared with vehicle, capsaicin significantly and preferentially increased nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d, an index of constitutive NOS) reactivity in the rostral midline and caudal lateral wing subregions.

View Article and Find Full Text PDF

Antibodies to glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS) were used to determine the effect of s.c. capsaicin (after 75 min) on astroglial cells in the rat arcuate nucleus-median eminence (ARC-ME).

View Article and Find Full Text PDF

Not much is known of the topography of galanin expression in the hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei neurons in colchicine (an axoplasmic inhibitor)-untreated animals. Insight into the biological implication(s) of galanin expression in the PVN and SON will depend, at least in part, on the nature of its distribution in colchicine-untreated animals. In this study therefore, the topographical distribution of galaninergic profiles was examined in the PVN and SON of colchicine-untreated rats.

View Article and Find Full Text PDF

This review will focus on the activity of oxytocin neurons in the supraoptic nucleus (SON) and some factors that regulate their function during parturition and milk ejection in the rat. The level of oxytocin increases in the blood during parturition following a regression of the corpus luteum. The increase in oxytocin secretion is presumably a consequence of releasing the oxytocin neurons from restraining inhibitory influences of endogenous opioids-, nitric oxide-, and GABA-containing neurons following declining blood levels of progesterone on the one hand and increasing levels of estrogen on the other during late pregnancy.

View Article and Find Full Text PDF