Publications by authors named "Chuluunbaatar O"

We present the momentum distributions of the nucleus and of the electrons from double ionization of the helium atom by Compton scattering of photons with hν=40  keV. We find that the doubly charged ion momentum distribution is very close to the Compton profile of the nucleus in the ground state of the helium atom, and the momentum distribution of the singly charged ion to give a precise image of the electron Compton profile. To reproduce these results, nonrelativistic calculations require the use of highly correlated initial- and final-state wave functions.

View Article and Find Full Text PDF

Even though the study of ion-atom collisions is a mature field of atomic physics, large discrepancies between experiment and theoretical calculations are still common. Here we present experimental results with high momentum resolution on the single ionization of helium induced by 1-MeV protons, and we compare these to theoretical calculations. The overall agreement is strikingly good, and even the first Born approximation yields good agreement between theory and experiment.

View Article and Find Full Text PDF

A theoretical study is performed of the possible role of the methyl-directed mismatch repair system in the ultraviolet-induced mutagenesis of Escherichia coli bacterial cells. For this purpose, mathematical models of the SOS network, translesion synthesis and mismatch repair are developed. Within the proposed models, the key pathways of these repair systems were simulated on the basis of modern experimental data related to their mechanisms.

View Article and Find Full Text PDF

Operator-difference multilayer schemes for solving the time-dependent Schrödinger equation up to sixth order of accuracy in the time step are presented. Reduced schemes for solving a set of coupled time-dependent Schrödinger equations with respect to the hyper-radial variable are devised using expansion of a wave packet over the set of appropriate basis angular functions. Further discretization of the resulting problem is realized by means of the finite-element method.

View Article and Find Full Text PDF