Publications by authors named "Chuluo Yang"

Although two-coordinate Cu(I) complexes are highly promising low-cost emitters for organic light-emitting diodes (OLEDs), the exposed metal center in the linear coordination geometry makes them suffer from poor stability. Herein, we describe a strategy to develop stable carbene-Cu-amide complexes through installing intramolecular noncovalent Cu⋅⋅⋅H interactions. The employment of 13H-dibenzo[a,i]carbazole (DBC) as the amide ligand leads to short Cu⋅⋅⋅H distances in addition to the Cu-N coordination bond.

View Article and Find Full Text PDF

Carbene-metal-amide (CMA) complexes are appealing emitters for organic light-emitting diodes (OLEDs). However, little is known about silver(i)-CMA complexes, particularly electroluminescent ones. Here we report a series of Ag(i)-CMA complexes prepared using benzothiophene-fused carbazole derivatives as amide ligands.

View Article and Find Full Text PDF

Among the various challenges in the field of organic light-emitting diodes (OLEDs), simultaneously achieving high efficiency, a long lifespan, and a narrow full-width at half maximum (FWHM) in blue OLEDs remains a significant hurdle. Herein, we demonstrate a strategy to improve the color purity of tetradentate Pt(II) complexes with the assistance of ⋅⋅⋅H interaction by incorporating trifluoromethyl (-CF) groups into the well-known blue tetradentate Pt(II) phosphorescent complex. The results show that the different substitution positions of -CF have significantly varying effects on the FWHM values of the complexes; specifically, introducing -CF on the benzene ring of carbazole effectively reduces the FWHM, while introducing it on the benzene ring linked to the carbene unit has a minimal impact.

View Article and Find Full Text PDF

In order to fulfill the demand for ultrahigh definition organic light-emitting diodes (OLEDs), pure-green emitters with Commission Internationale de l'Éclairage (CIE) y-coordinate over 0.71 are in urgent demand. Meanwhile, the high device efficiency, small efficiency roll-off, and operational lifetime also remain challenging issues.

View Article and Find Full Text PDF

Multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters offer natural advantages for creating power-efficient, wide-color-gamut OLEDs. However, current green MR-TADF emitters face challenges in simultaneously achieving high color purity and efficient reverse inter-system crossing (RISC), leading to suboptimal device performance. In this study, we propose a synergistic molecular design approach that combines π-extension and peripheral locking to address these challenges.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on creating new multi-resonance thermally activated delayed fluorescence (MR-TADF) materials for deep-blue light emission to enhance device efficiency in OLED technology.
  • Researchers combine MR-TADF frameworks with 9,9'-spirobifluorene units to improve structural stability and avoid quenching issues that often reduce performance.
  • The resulting emitters demonstrate superior properties, including narrowband deep-blue emission, high photoluminescence quantum yield, and a maximum external quantum efficiency (EQE) of 39.0%, leading to improved performance in OLED applications.
View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on improving circularly polarized luminescence (CPL) emitters, particularly for deep-blue colors, by manipulating key molecular parameters such as rigidity, symmetry, and chiral centers.
  • The study introduces four pairs of novel chiral emitters that utilize 3D-interlocking structures to achieve narrower emission spectra and enhanced chiroptical activity, with notable measurement improvements.
  • Demonstrated in vacuum-deposited organic light-emitting diodes, these new emitters show excellent performance metrics, including high external quantum efficiency and low color deviation, indicating their potential for advanced lighting technologies.
View Article and Find Full Text PDF

White organic light-emitting diodes (WOLEDs) hold significant promise in illumination and displays, but achieving high efficiency while maintaining stability is an ongoing challenge. Here, we strategically combine a blue donor-acceptor thermally activated delayed fluorescence (TADF) emitter featuring rapid reverse intersystem crossing rate and a yellow multi-resonance TADF emitter renowned for the fast radiative transition process to achieve warm WOLEDs with exceptional power efficiency exceeding 190 lm W and external quantum efficiency (EQE) of 39%, setting records for WOLEDs. Meanwhile, these devices also exhibit an extended operational lifetime (LT) of 446 h at an initial luminance of 1000 cd m.

View Article and Find Full Text PDF

Multi-resonance (MR) type emitters have emerged as highly promising candidates for high-resolution organic light-emitting diodes (OLEDs). However, thermally activated delayed fluorescence (TADF) emissions with simultaneous short excited state lifetimes and ultrapure blue color (a CIE close to 0.046 and an emission peak >440 nm) have rarely been obtained for MR emitters.

View Article and Find Full Text PDF

A series of green multi-resonance thermally activated delayed fluorescence polymeric emitters featuring conjugation-interrupted main chains were facilely prepared metal-free superacid-catalyzed Friedel-Crafts polyhydroxyalkylation. These emitters exhibited photoluminescence quantum yields of up to 76% and small full-widths at half maximum of 35-38 nm in toluene. The corresponding solution-processed OLEDs achieved an excellent maximum external quantum efficiency of 19.

View Article and Find Full Text PDF

The advancement of acceptors plays a pivotal role in determining photovoltaic performance. While previous efforts have focused on optimizing acceptor-donor-acceptor-donor-acceptor (A-DA-D-A)-typed acceptors by adjusting side chains, end groups, and conjugated extension of the electron-deficient central A unit, the systematic exploration of the impact of peripheral aryl substitutions, particularly with different electron groups, on the A unit and its influence on device performance is still lacking. In this study, three novel acceptors - QxTh, QxPh, and QxPy - with distinct substitutions on the quinoxaline (Qx) are designed and synthesized.

View Article and Find Full Text PDF

High-performance organic solar cells often rely on halogen-containing solvents, which restrict the photovoltaic industry. Therefore, it is imperative to develop efficient organic photovoltaic materials compatible with halogen-free solvents. Herein, a series of benzo[a]phenazine (BP)-core-based small-molecule acceptors (SMAs) achieved through an isomerization chlorination strategy is presented, comprising unchlorinated NA1, 10-chlorine substituted NA2, 8-chlorine substituted NA3, and 7-chlorine substituted NA4.

View Article and Find Full Text PDF

Three novel asymmetric Ir(III) complexes have been rationally designed to optimize their emitting dipole orientations (EDO) and enhance light outcoupling in blue phosphorescent organic light-emitting diodes (OLEDs), thereby boosting their external quantum efficiency (EQE). Bulky electron-donating groups (EDGs), namely: carbazole (Cz), di-tert-butyl carbazole (tBuCz), and phenoxazine (Pxz) are incorporated into the tridentate dicarbene pincer chelate to induce high degree of packing anisotropy, simultaneously enhancing their photophysical properties. Angle-dependent photoluminescence (ADPL) measurements indicate increased horizontal transition dipole ratios of 0.

View Article and Find Full Text PDF

Exploring strategies to enhance reverse intersystem crossing (RISC) is of great significance to develop efficient thermally activated delayed fluorescent (TADF) molecules. In this study, we investigate the substantial impact of nonplanar structure on improving the rate of RISC ( ). Three emitters based on spiroacridine donors are developed to evaluate this hypothesis.

View Article and Find Full Text PDF

A BPAPTPyC organic molecule containing a sandwich structural chromophore is designed and synthesized to produce blue thermally activated delayed fluorescence (TADF). The chromophore is composed of two di(4--butylphenyl)amino donors and one inserted terpyridyl acceptor hitched at positions 1, 8, and 9 of a single carbazole via the -phenylene group, in which the multiple space π-π interactions between the donor and acceptor enable the molecule to possess the TADF feature with a high energy emission at 470 nm but a low photoluminescence quantum yield (PLQY) and a small proportion of the delayed component. In contrast, the corresponding Zn(BPAPTPyC)Cl complex has a high PLQY and a short lifetime with a red-shifted emission due to the enhanced rigidity and electron accepting ability of the terpyridyl group from coordination.

View Article and Find Full Text PDF

A new class of three-charge (0, -1, -2) ligand-based binuclear and mononuclear iridium complexes bearing benzo[]oxazole-2-thiol ligand have been synthesized. Notably, the binuclear complexes ( and ) can be generated at low temperatures by reacting the iridium complex precursors ( and ) with equal amounts of the benzo[]oxazole-2-thiol ligands, while the corresponding mononuclear complexes ( and ) are formed at high temperatures. X-ray diffraction analysis shows that the benzo[]oxazole-2-thiol ligand plays an unusual and interesting bridging role in binuclear complexes and induces rich intermolecular and intramolecular interactions, while in mononuclear complexes, it forms an interesting four-membered ring coordination.

View Article and Find Full Text PDF

A new narrowband thermally activated delayed fluorescence emitter, PhCzBN-PO, was developed by incorporating the diphenylphosphine oxide (DPPO) group into a multi-resonance core. The unique properties of DPPO enabled PhCzBN-PO to achieve pure green emission and a nonplanar structure. The resulting electroluminescent devices achieved high external quantum efficiencies up to 32.

View Article and Find Full Text PDF

Developing a new end group for synthesizing asymmetric small molecule acceptors (SMAs) is crucial for achieving high-performance organic photovoltaics (OPVs). Herein, an asymmetric small molecule acceptor, BTP-BO-4FO, featuring a new difluoro-methoxylated end-group is reported. Compared to its symmetric counterpart L8-BO, BTP-BO-4FO exhibits an upshifted energy level, larger dipole moment, and more sequential crystallinity.

View Article and Find Full Text PDF

Thermally activated delayed fluorescence (TADF) emitters have become increasingly prominent due to their promising applications across various fields, prompting a continuous demand for developing reliable synthetic methods to access them. This review aims to highlight the progress made in the last decade in synthesizing organic TADF compounds through C-H bond activation and functionalization. The review begins with a brief introduction to the basic features and design principles of TADF emitters.

View Article and Find Full Text PDF

Multi-boron-embedded multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters show promise for achieving both high color-purity emission and high exciton utilization efficiency. However, their development is often impeded by a limited synthetic scope and excessive molecular weights, which challenge material acquisition and organic light-emitting diode (OLED) fabrication by vacuum deposition. Herein, we put forward a B‒N covalent bond-involved π-extension strategy via post-functionalization of MR frameworks, leading to the generation of high-order B/N-based motifs.

View Article and Find Full Text PDF
Article Synopsis
  • Organic scintillators are gaining interest for X-ray detection in sectors like healthcare, but struggle with issues like low efficiency in absorbing X-rays and utilizing triplet excitons.
  • The development of new organogold(III) complexes, Tp-Au-1 and Tp-Au-2, incorporates a novel interaction approach that significantly boosts X-ray attenuation and exciton harvesting.
  • The Tp-Au-2 complex achieved an exceptional scintillation light yield of 77,600 photons per MeV, leading to high-quality X-ray imaging with excellent spatial resolution, surpassing many existing scintillator materials.
View Article and Find Full Text PDF

Thermally activated delayed fluorescence (TADF) emitters featuring through-space charge transfer (TSCT) can be excellent candidates for piezochromic luminescent (PCL) materials due to their structural dynamics. Spatial donor-acceptor (D-A) stacking arrangements enable the modulation of inter- and intramolecular D-A interactions, as well as spatial charge transfer states, under varying pressure conditions. Herein, we demonstrate an effective approach toward dynamic reversible full-color PCL materials with TSCT-TADF characteristics.

View Article and Find Full Text PDF

1,4-BN-doped polycyclic aromatic hydrocarbons (PAHs) have emerged as very promising emitters in organic light-emitting diodes (OLEDs) due to their narrowband emission spectra that may find application in high-definition displays. While considerable research has focused on investigating the properties of these materials, less attention has been placed on their synthetic methodology. Here we developed an efficient synthetic method for 1,4-BN-doped PAHs, which enables sustainable production of narrowband organic emitting materials.

View Article and Find Full Text PDF

The synergistic integration of a fine-tuned chiral donor with a hybrid long/short-range charge-transfer mechanism offers an accessible pathway to construct highly efficient circularly polarized emitters. Consequently, a notable dissymmetry factor of 1.6 × 10, concomitantly with a record-setting maximum external quantum efficiency of 37.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed two new near-infrared (NIR) MR-TADF emitters, PXZ-R-BN and BCz-R-BN, to enhance OLED efficiency and narrowband emission.
  • These compounds feature high NIR emission, with PXZ-R-BN emitting at 693 nm and BCz-R-BN at 713 nm, achieving excellent external quantum efficiencies (EQE) of nearly 30% and 24.2%, respectively.
  • Additionally, a new platinum sensitizer, Pt-1, is used to optimize OLED performance, resulting in exceptional operational stability for the PXZ-R-BN OLEDs.
View Article and Find Full Text PDF