Publications by authors named "ChulGyu Song"

In the field of biology, dark field microscopy provides superior insight into cells and subcellular structures. However, most dark field microscopes are equipped with a dark field filter and a light source on a 2D-based specimen, so only a flat sample can be observed in a limited space. We propose a compact cell monitoring system with built-in dark field filter with an optimized incident angle of the light source to provide real-time cell imaging and spatial cell monitoring for long-term free from phototoxicity.

View Article and Find Full Text PDF

Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) uses photosensitizers and light to kill cancer cells and has become a promising therapeutic modality because of advantages such as minimal invasiveness and high cancer selectivity. However, PTT or PDT as a single treatment modality has insufficient therapeutic efficacy. Moreover, oxygen consumption by PDT activates angiogenic factors and leads to cancer recurrence and progression.

View Article and Find Full Text PDF

Biomolecular condensates formed via liquid-liquid phase separation (LLPS) are increasingly being shown to play major roles in cellular self-organization dynamics in health and disease. It is well established that macromolecular crowding has a profound impact on protein interactions, particularly those that lead to LLPS. Although synthetic crowding agents are used during in vitro LLPS experiments, they are considerably different from the highly crowded nucleo-/cytoplasm and the effects of in vivo crowding remain poorly understood.

View Article and Find Full Text PDF

The aim of this study is to design GoogLeNet deep neural network architecture by expanding the kernel size of the inception layer and combining the convolution layers to classify the electrocardiogram (ECG) beats into a normal sinus rhythm, premature ventricular contraction, atrial premature contraction, and right/left bundle branch block arrhythmia. Based on testing MIT-BIH arrhythmia benchmark databases, the scope of training/test ECG data was configured by covering at least three and seven -peak features, and the proposed extended-GoogLeNet architecture can classify five distinct heartbeats; normal sinus rhythm (NSR), premature ventricular contraction (PVC), atrial premature contraction (APC), right bundle branch block (RBBB), and left bundle brunch block(LBBB), with an accuracy of 95.94%, an error rate of 4.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are closely related with various pathological disorders. Therefore, real-time detection of ROS is essential for understanding the procedure of diseases and diagnosing the accurate lesion sites. Hydrogen peroxide (HO) accounts for a large portion of ROS and has a longer half-life than other ROS, which makes it a highly promising diagnostic and therapeutic biomarker.

View Article and Find Full Text PDF

There has been increasing interest in the development of pathological stimulus-activatable nanoplatforms with theranostic functions. Here, we report ketalized maltodextrin (KMD) nanoparticles which are able to deliver therapeutic and imaging functions to the acidic conditions simultaneously, as may be found in the site of inflammation. KMD was synthesized as a platform of the theranostic nanoparticles by conjugating acid-cleavable hydrophobic moieties to maltodextrin through carbonate bonds.

View Article and Find Full Text PDF

Muscles of peripheral artery disease (PAD) patients are under oxidative stress associated with a significantly elevated level of reactive oxygen species (ROS) including hydrogen peroxide (HO). Curcumin is a major active constituent of turmeric and is well known for its highly potent antioxidant, anti-inflammatory and angiogenic effects. We previously reported antioxidant vanillyl alcohol-incorporated copolyoxalate (PVAX) which is designed to rapidly scavenge HO and release bioactive vanillyl alcohol and CO in a HO-triggered manner.

View Article and Find Full Text PDF

A thrombus (blood clot), composed mainly of activated platelets and fibrin, obstructs arteries or veins, leading to various life-threatening diseases. Inspired by the distinctive physicochemical characteristics of thrombi such as abundant fibrin and an elevated level of hydrogen peroxide (HO), we developed thrombus-specific theranostic (T-FBM) nanoparticles that could provide HO-triggered photoacoustic signal amplification and serve as an antithrombotic nanomedicine. T-FBM nanoparticles were designed to target fibrin-rich thrombi and be activated by HO to generate CO bubbles to amplify the photoacoustic signal.

View Article and Find Full Text PDF

The recent advances in nanotechnology have led to the development of smart nanomaterials that combine diagnostic and therapeutic functions and provide synergistic anticancer effects through the combination of different treatment modalities. Here, we report a promising theranostic nanoconstruct that can translate into multiple functionalities: fluorescence/photoacoustic imaging, acid-triggered generation of ROS (reactive oxygen species), heat and singlet oxygen production under near infrared (NIR) laser irradiation, and coupling oxidative anticancer therapy to dual imaging-guided photothermal/photodynamic therapy. An NIR dye-conjugated hydroxyl radical generating biodegradable polymer (HRGP-IR) is employed as a theranostic nanoplatform.

View Article and Find Full Text PDF

A thrombus (blood clot) is formed in injured vessels to maintain the integrity of vasculature. However, obstruction of blood vessels by thrombosis slows blood flow, leading to death of tissues fed by the artery and is the main culprit of various life-threatening cardiovascular diseases. Herein, we report a rationally designed nanomedicine that could specifically image obstructed vessels and inhibit thrombus formation.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluated the anticancer properties of bioinspired silver (AgNPs) and gold nanoparticles (AuNPs) synthesized from spinach leaves against mouse myoblast cancer cells.
  • Both nanoparticles demonstrated cytotoxic effects on cancer cells at low concentrations, with AgNPs causing significant cell death in zebrafish embryos at a lower dose compared to AuNPs.
  • The results suggest that these nanoparticles could be developed as potential biomaterials for cancer treatment, particularly highlighting their ability to induce apoptosis in cancer cells.
View Article and Find Full Text PDF

Overproduction of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) leads to oxidative stress, causing inflammation and cellular damages and death. H2O2 is one of the most stable and abundant ROS and H2O2-mediated oxidative stress is considered as a key mediator of cellular and tissue damages during ischemia/reperfusion (I/R) injury. Therefore, H2O2 could hold tremendous potential as a diagnostic biomarker and therapeutic target for oxidative stress-associated inflammatory conditions such as I/R injury.

View Article and Find Full Text PDF

A real-time photoacoustic tomography (PAT) system is developed using a linear array probe and phantom images are acquired with a pattern of line structure. Moreover, it is attempted to detect line structures from the acquired images by Hough transform. This effort leads to the measurement of a process of magenta passing through a tube and acquisition of images at a speed of about 2 frame/sec.

View Article and Find Full Text PDF

Here we developed a real-time photoacoustic tomography (PAT) imaging acquisition device based on the linear array transducer utilized on ultrasonic devices. Also, we produced a phantom including diverse contrast media and acquired PAT imaging as the light source wavelength was changing to see if the contrast media reacted. Indocyanine green showed the highest reaction around the 800-nm band, methylene blue demonstrated the same in the 750-nm band, and gold nanoparticle showed the same in the 700-nm band.

View Article and Find Full Text PDF

The very first step to process electrocardiogram (ECG) signal is to eliminate baseline wandering interference that is usually caused by electrode-skin impedance mismatch, motion artifacts due to a patient's body moment or respiratory breathing. A new method is thus suggested to remove baseline wandering in ECG by improving the detrending method that was originally proposed for eliminating slow non-stationary trends from heart rate variability (HRV). In our proposed method, a global trend is estimated in terms of baseline wandering by merging the local trend based on an ECG segment that represents a part of the ECG signal.

View Article and Find Full Text PDF

Background: Image quality assessment method of photoacoustic tomography has not been completely standardized yet. Due to the combined nature of photonic signal generation and ultrasonic signal transmission in biological tissue, neither optical nor ultrasonic traditional methods can be used without modification. An optical resolution measurement technique was investigated for its feasibility for resolution measurement of photoacoustic tomography.

View Article and Find Full Text PDF

Objective: To evaluate normal healthy persons without spasticity to observe normal findings of the elbow stretch reflex using a newly developed, portable, hand-driven spasticity-measuring system.

Method: Thirty normal persons without any disease involving the central or peripheral nervous system were enrolled in this study. The portable hand-driven isokinetic system is able to measure the joint angle, angular velocity, electromyographic (EMG) signals, and torque during elbow passive extension-flexion.

View Article and Find Full Text PDF

Background: Radiological scoring methods such as colon transit time (CTT) have been widely used for the assessment of bowel motility. However, these radiograph-based methods need cumbersome radiological instruments and their frequent exposure to radiation. Therefore, a non-invasive estimation algorithm of bowel motility, based on a back-propagation neural network (BPNN) model of bowel sounds (BS) obtained by an auscultation, was devised.

View Article and Find Full Text PDF

We investigated a high-precision optical method for measuring the thickness of biological samples regardless of their transparency. The method is based on the precise measurement of optical path length difference of the end surfaces of objects, using a dual-arm axial-scanning low-coherence interferometer. This removes any consideration of the shape, thickness, or transparency of testing objects when performing the measurement.

View Article and Find Full Text PDF

This paper describes a 3D endoscopic video system designed to improve visualization and enhance the ability of the surgeon to perform delicate endoscopic surgery. In a comparison of the polarized and conventional electric shutter-type stereo imaging systems, the former was found to be superior in terms of both accuracy and speed for suturing and for the loop pass test. Among the groups performing loop passing and suturing, there was no significant difference in the task performance between the 2D and 3D modes, however, suturing was performed 15% (p < 0.

View Article and Find Full Text PDF

Due to the possibility of detecting certain physiological conditions from thermal features of the skin surface acquired from infrared thermal imaging, the health conditions of a person can be revealed by analyzing the thermal signatures of his or her forearms regions in an infrared image. The assessment of hand's or arm's temperature distribution for clinical diagnosis or monitoring requires the confinement of region of interest (ROI) on the forearms regions. Hence, the purpose of this study is automatically to segment forearms regions in an infrared thermal image so that the clinicians can able to locate the interested regions and extract the skin temperature distributions with a high degree of reproducibility.

View Article and Find Full Text PDF