Aims/hypothesis: The aim of this work was to explore molecular amino acids (AAs) and related structures of HLA-DQA1-DQB1 that underlie its contribution to the progression from stages 1 or 2 to stage 3 type 1 diabetes.
Methods: Using high-resolution DQA1 and DQB1 genotypes from 1216 participants in the Diabetes Prevention Trial-Type 1 and the Diabetes Prevention Trial, we applied hierarchically organised haplotype association analysis (HOH) to decipher which AAs contributed to the associations of DQ with disease and their structural properties. HOH relied on the Cox regression to quantify the association of DQ with time-to-onset of type 1 diabetes.
Objective: To explore associations of HLA class II genes (HLAII) with the progression of islet autoimmunity from asymptomatic to symptomatic type 1 diabetes (T1D).
Research Design And Methods: Next-generation targeted sequencing was used to genotype eight HLAII genes (DQA1, DQB1, DRB1, DRB3, DRB4, DRB5, DPA1, DPB1) in 1,216 participants from the Diabetes Prevention Trial-1 and Randomized Diabetes Prevention Trial with Oral Insulin sponsored by TrialNet. By the linkage disequilibrium, DQA1 and DQB1 are haplotyped to form DQ haplotypes; DP and DR haplotypes are similarly constructed.
The gene complex located on chromosome 19q13.4 encodes the Killer-cell Immunoglobulin-like Receptors (KIRs), which exhibit remarkable polymorphism in both gene content and sequences. Further, the repertoire of KIR genes varies within and between populations, creating a diverse pool of KIR genotypes.
View Article and Find Full Text PDFRhesus cytomegalovirus (RhCMV)-based vaccination against Simian Immunodeficiency virus (SIV) elicits MHC-E-restricted CD8+ T cells that stringently control SIV infection in ~55% of vaccinated rhesus macaques (RM). However, it is unclear how accurately the RM model reflects HLA-E immunobiology in humans. Using long-read sequencing, we identified 16 Mamu-E isoforms and all Mamu-E splicing junctions were detected among HLA-E isoforms in humans.
View Article and Find Full Text PDFExtensive mutations in the Omicron spike protein appear to accelerate the transmission of SARS-CoV-2, and rapid infections increase the odds that additional mutants will emerge. To build an investigative framework, we have applied an unsupervised machine learning approach to 4296 Omicron viral genomes collected and deposited to GISAID as of December 14, 2021, and have identified a core haplotype of 28 polymutants (A67V, T95I, G339D, R346K, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, K796Y, N856K, Q954H, N69K, L981F) in the spike protein and a separate core haplotype of 17 polymutants in non-spike genes: (K38, A1892) in nsp3, T492 in nsp4, (P132, V247, T280, S284) in 3C-like proteinase, I189 in nsp6, P323 in RNA-dependent RNA polymerase, I42 in Exonuclease, T9 in envelope protein, (D3, Q19, A63) in membrane glycoprotein, and (P13, R203, G204) in nucleocapsid phosphoprotein. Using these core haplotypes as reference, we have identified four newly emerging polymutants (R346, A701, I1081, N1192) in the spike protein (p value = 9.
View Article and Find Full Text PDFHumanity has faced three recent outbreaks of novel betacoronaviruses, emphasizing the need to develop approaches that broadly target coronaviruses. Here, we identify 55 monoclonal antibodies from COVID-19 convalescent donors that bind diverse betacoronavirus spike proteins. Most antibodies targeted an S2 epitope that included the K814 residue and were non-neutralizing.
View Article and Find Full Text PDFDogs have served as one of the most reliable preclinical models for a variety of diseases and treatments, including stem/progenitor cell transplantation. At the genetic epicenter of dog transplantation models, polymorphic major histocompatibility complex (MHC) genes are most impactful on transplantation success. Among the canine class I and class II genes, DLA-88 has been best studied in transplantation matching and outcomes, with 129 DLA-88 alleles identified.
View Article and Find Full Text PDFThe potential for future coronavirus outbreaks highlights the need to broadly target this group of pathogens. We used an epitope-agnostic approach to identify six monoclonal antibodies that bind to spike proteins from all seven human-infecting coronaviruses. All six antibodies target the conserved fusion peptide region adjacent to the S2' cleavage site.
View Article and Find Full Text PDFObjective: The purpose was to test the hypothesis that the HLA-DQαβ heterodimer structure is related to the progression of islet autoimmunity from asymptomatic to symptomatic type 1 diabetes (T1D).
Research Design And Methods: Next-generation targeted sequencing was used to genotype HLA-DQA1-B1 class II genes in 670 subjects in the Diabetes Prevention Trial-Type 1 (DPT-1). Coding sequences were translated into DQ α- and β-chain amino acid residues and used in hierarchically organized haplotype (HOH) association analysis to identify motifs associated with diabetes onset.
Unlabelled: The potential for future coronavirus outbreaks highlights the need to develop strategies and tools to broadly target this group of pathogens. Here, using an epitope-agnostic approach, we identified six monoclonal antibodies that bound to spike proteins from all seven human-infecting coronaviruses. Epitope mapping revealed that all six antibodies target the conserved fusion peptide region adjacent to the S2' cleavage site.
View Article and Find Full Text PDFExtensive mutations in the Omicron spike protein appear to accelerate the transmission of SARS-CoV-2, and rapid infections increase the odds that additional mutants will emerge. To build an investigative framework, we have applied an unsupervised machine learning approach to 4296 Omicron viral genomes collected and deposited to GISAID as of December 14, 2021, and have identified a core haplotype of 28 polymutants (A67V, T95I, G339D, R346K, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, K796Y, N856K, Q954H, N69K, L981F) in the spike protein and a separate core haplotype of 17 polymutants in non-spike genes: (K38, A1892) in nsp3, T492 in nsp4, (P132, V247, T280, S284) in 3C-like proteinase, I189 in nsp6, P323 in RNA-dependent RNA polymerase, I42 in Exonuclease, T9 in envelope protein, (D3, Q19, A63) in membrane glycoprotein, and (P13, R203, G204) in nucleocapsid phosphoprotein. Using these core haplotypes as reference, we have identified four newly emerging polymutants (R346, A701, I1081, N1192) in the spike protein (p-value=9.
View Article and Find Full Text PDFSARS-CoV-2 is spreading worldwide with continuously evolving variants, some of which occur in the Spike protein and appear to increase viral transmissibility. However, variants that cause severe COVID-19 or lead to other breakthroughs have not been well characterized. To discover such viral variants, we assembled a cohort of 683 COVID-19 patients; 388 inpatients ("cases") and 295 outpatients ("controls") from April to August 2020 using electronically captured COVID test request forms and sequenced their viral genomes.
View Article and Find Full Text PDFBackground: HLA-DR4, a common antigen of HLA-DRB1, has multiple subtypes that are strongly associated with risk of type 1 diabetes (T1D); however, some are risk neutral or resistant. The pathobiological mechanism of HLA-DR4 subtypes remains to be elucidated.
Methods: We used a population-based case-control study of T1D (962 patients and 636 controls) to decipher genetic associations of HLA-DR4 subtypes and specific residues with susceptibility to T1D.
HLA-DQ molecules account over 50% genetic risk of type 1 diabetes (T1D), but little is known about associated residues. Through next generation targeted sequencing technology and deep learning of DQ residue sequences, the aim was to uncover critical residues and their motifs associated with T1D. Our analysis uncovered (αa1, α44, α157, α196) and (β9, β30, β57, β70, β135) on the HLA-DQ molecule.
View Article and Find Full Text PDFHuman chromosome 19q13.4 contains genes encoding killer-cell immunoglobulin-like receptors (KIR). Reported haplotype lengths range from 67 to 269 kb and contain 4 to 18 genes.
View Article and Find Full Text PDFHLA-DQA1 and -DQB1 genes have significant and potentially causal associations with autoimmune type 1 diabetes (T1D). To follow up on the earlier analysis on high-risk HLA-DQ2.5 and DQ8.
View Article and Find Full Text PDFHLA-DQA1 and -DQB1 are strongly associated with type 1 diabetes (T1D), and DQ8.1 and DQ2.5 are major risk haplotypes.
View Article and Find Full Text PDFHVTN 505 is a preventative vaccine efficacy trial testing DNA followed by recombinant adenovirus serotype 5 (rAd5) in circumcised, Ad5-seronegative men and transgendered persons who have sex with men in the United States. Identified immune correlates of lower HIV-1 risk and a virus sieve analysis revealed that, despite lacking overall efficacy, vaccine-elicited responses exerted pressure on infecting HIV-1 viruses. To interrogate the mechanism of the antibody correlate of HIV-1 risk, we examined antigen-specific antibody recruitment of Fcγ receptors (FcγRs), antibody-dependent cellular phagocytosis (ADCP), and the role of anti-envelope (anti-Env) IgG3.
View Article and Find Full Text PDFHIV Vaccine Trials Network (HVTN) 505 was a phase 2b efficacy trial of a DNA/recombinant adenovirus 5 (rAd5) HIV vaccine regimen. Although the trial was stopped early for lack of overall efficacy, later correlates of risk and sieve analyses generated the hypothesis that the DNA/rAd5 vaccine regimen protected some vaccinees from HIV infection yet enhanced HIV infection risk for others. Here, we assessed whether and how host Fc gamma receptor (FcγR) genetic variations influenced the DNA/rAd5 vaccine regimen's effect on HIV infection risk.
View Article and Find Full Text PDFMany clinical laboratories supporting solid organ transplant programs use multiple HLA genotyping technologies, depending on individual laboratory needs. Sequence-specific primers and quantitative polymerase chain reaction (qPCR) serve the rapid turnaround necessary for deceased donor workup, while sequence-specific oligonucleotide probe (SSOP) technology is widely employed for higher volumes. When clinical need mandates high-resolution data, Sanger sequencing-based typing (SBT) has been the "gold standard.
View Article and Find Full Text PDF