Publications by authors named "Chul-Min Chon"

Ex situ mineralization of CO is a promising technology that employs Ca- and Mg-rich industrial wastes but it simultaneously produces end products. Although Mg is a major mineralization source, it can adversely impact carbonate precipitation and crystal stability during co-precipitation in combination with Ca. In this study, the effects of Mg ions on the mineralization process and its products were investigated using precipitates formed at different aqueous concentrations of Mg.

View Article and Find Full Text PDF

Nano Fe(III) oxide (FO) was used as an amendment material in CO-assisted pyrolysis of spent coffee grounds (SCG) and its impacts on the syngas (H & CO) generation and biochar adsorptive properties were investigated. Amendment of FO led to 153 and 682% increase of H and CO in pyrolytic process of SCG, respectively, which is deemed to arise from enhanced thermal cracking of hydrocarbons and oxygen transfer reaction mediated by FO. Incorporation of FO successfully created porous structure in the produced biochar.

View Article and Find Full Text PDF

The setting behavior of geopolymers is affected by the type of source materials, alkali activators, mix formulations, and curing conditions. Calcium hydroxide is known to be an effective additive to shorten the setting period of geopolymers. However, there is still room for improvement in the understanding of the effect of calcium hydroxide on the setting and phase evolution of geopolymers.

View Article and Find Full Text PDF

The differences in the toxicity of cobalt oxide nanoparticles (Co-NPs) of two different sizes were evaluated in the contexts of the activities of bacterial bioluminescence, - gene, enzyme function and biosynthesis of β-galactosidase, bacterial gene mutation, algal growth, and plant seed germination and root/shoot growth. Each size of Co-NP exhibited a different level of toxicity (sensitivity) in each biological activity. No revertant mutagenic ratio (greater than 2.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on mercury contamination in Gumu Creek, South Korea, where sediment showed high mercury levels exceeding 250 mg/kg along with significant amounts of iron, sulfur, and organic carbon in anoxic conditions.
  • Analysis indicated that the iron sulfide (FeS) present in the sediment primarily influenced the form of mercury, maintaining it as β-HgS and preventing the production of toxic methylated mercury by facilitating the reduction of mercury (Hg(II)) to its elemental form (Hg(0)).
  • The findings align with previous laboratory studies, suggesting that controlled laboratory reactions can help explain the behavior of mercury in real-world contaminated sediments.
View Article and Find Full Text PDF

During X-ray absorption spectroscopy (XAS) measurements of arsenic (As), beam-induced redox transformation is often observed. In this study, the As species immobilized by poorly crystallized mackinawite (FeS) was assessed for the susceptibility to beam-induced redox reactions as a function of sample properties including the redox state of FeS and the solid-phase As speciation. The beam-induced oxidation of reduced As species was found to be mediated by the atmospheric O and the oxidation products of FeS [e.

View Article and Find Full Text PDF

This study examined the reaction mechanism of arsenite, As(III), and antimonite, Sb(III), with iron sulfide and compared their pH-dependent reaction behaviors under strictly anoxic environments. The comparison of Sb(III) with As(III), based on their chemical similarity, may provide useful insight into understanding the geochemical behavior of the less studied Sb(III). The pH-dependent batch sorption studies revealed that As(III) and Sb(III) displayed similar removal trends with pH in terms of the removal efficiency.

View Article and Find Full Text PDF

Different environmental conditions such as pH and dissolved elements of mine stream induce precipitation of different minerals and their associated microbial community may vary. Therefore, mine precipitates from various environmental conditions were collected and their associated microbiota were analyzed through metagenomic DNA sequencing. Various Fe and Mn minerals including ferrihydrite, schwertmannite, goethite, birnessite, and Mn-substituted δ-FeOOH (δ-(Fe, Mn)OOH) were found in the different environmental conditions.

View Article and Find Full Text PDF

There is no standardized procedure for producing geopolymers; therefore, many researchers develop their own procedures for mixing and curing to achieve good workability and strength development. The curing scheme adopted is important in achieving maximum performance of resultant geopolymers. In this study, we evaluated the impact of sealed and unsealed curing on mechanical strength of geopolymers.

View Article and Find Full Text PDF

In predicting the acid-forming potential of rock samples, a combination of acid-base accounting (ABA) and net acid generation (NAG) tests has been commonly used. While simple and economical, this method sometimes shows low reliability such as categorizing certain samples as uncertain (UC). ABA and NAG tests were modified to selectively recover valid minerals in nature and substituted for the original tests.

View Article and Find Full Text PDF

Zirconia-carbon (ZC) composites were prepared via calcination of Zr-based metal organic frameworks, UiO-66 and amino-functionalized UiO-66, under N₂ atmosphere. The prepared composites were characterized using a series of instrumental analyses. The surface area of the ZC composites increased with the increase of calcination temperature, with the formation of a graphite oxide phase observed at 900 °C.

View Article and Find Full Text PDF

Immobilisation of heavy metals in geopolymers has attracted attention as a potential means of treating toxic wastes. Lead is known to be effectively immobilised in a geopolymer matrix, but detailed explanation for the mechanisms involved and the specific chemical form of lead are not fully understood. To reveal the effect of the activator types on the immobilisation of lead in geopolymers, 0.

View Article and Find Full Text PDF

Although it has been well-known that atmospheric aerosols affect negatively the local air quality, human health, and climate changes, the chemical and physical properties of atmospheric aerosols are not fully understood yet. This study experimentally measured the physiochemical characteristics of fine and coarse aerosol particles at the suburban area to evaluate relative contribution to environmental pollution in consecutive seasons of autumn and winter, 2014-2015, using XRD, SEM-EDX, XNI, ICP-MS, and TOF-SIMS. For these experimental works, the fine and coarse aerosols were collected by the high volume air sampler for 7 days each season.

View Article and Find Full Text PDF

The biphenyl-degrading strain, Pseudomonas sp. KM-04, was isolated from polychlorinated biphenyls-contaminated soil sample obtained from the vicinity of a former coal mine. We herein report that strain KM-04 can use biphenyl as a sole carbon source, and resting cells convert biphenyl to its corresponding metabolic intermediates.

View Article and Find Full Text PDF

The feasibility of using granular ferric hydroxide (GFH) with zero-valent iron (Fe(0)) for its potential utility in enhancing nitrate reduction was investigated. The addition of 10gL(-1) GFH to 25gL(-1) Fe(0) significantly enhanced nitrate removal, resulting in 93% removal of 52.2mg-NL(-1) in 36-h as compared to 23% removal with Fe(0) alone.

View Article and Find Full Text PDF

Bench-scale batch experiments were performed to investigate the feasibility of using different types of clay minerals (bentonite, fuller's earth, and biotite) with zero-valent iron for their potential utility in enhancing nitrate reduction and ammonium control. Kinetics experiments performed with deionized water (DW) and groundwater (GW) revealed nitrate reduction by Fe(0) proceeded at significantly faster rate in GW than in DW, and such a difference was attributed to the formation of green rust in GW. The amendment of the minerals at the dose of 25 g L(-1) in Fe(0) reaction in GW resulted in approximately 41%, 43%, and 33% more removal of nitrate in 64 h reaction for bentonite, fuller's earth, and biotite, respectively, compared to Fe(0) alone reaction.

View Article and Find Full Text PDF

Salt water intrusion is a key issue in dealing with exploitation, restoration, and management of fresh ground water in coastal aquifers. Constant monitoring of the fresh water-salt water interface is necessary for proper management of ground water resources. This study presents a simple method to estimate the depth of the fresh water-salt water interface in coastal aquifers using two sets of pressure data obtained from the fresh and saline zones within a single borehole.

View Article and Find Full Text PDF

Steel manufacturing byproducts were tested as a means of treating mine tailing leachate with a high As concentration. Byproduct materials can be placed in situ as permeable reactive barriers to control the subsurface release of leachate from tailing containment systems. The tested materials had various compositions of elemental Fe, Fe oxides, Ca-Fe oxides and Ca hydroxides typical of different steel manufacturing processes.

View Article and Find Full Text PDF