Publications by authors named "Chul Woong Joo"

Organic light-emitting diode (OLED) microdisplays have received great attention owing to their excellent performance for augmented reality/virtual reality devices applications. However, high pixel density of OLED microdisplay causes electrical crosstalk, resulting in color distortion. This study investigated the current crosstalk ratio and changes in the color gamut caused by electrical crosstalk between sub-pixels in high-resolution full-color OLED microdisplays.

View Article and Find Full Text PDF

Herein, the color gamut change by optical crosstalk between sub-pixels in high-resolution full-color organic light-emitting diode (OLED) microdisplays was numerically investigated. The color gamut of the OLED microdisplay decreased dramatically as the pixel density of the panel increased from 100 pixels per inch (PPI) to 3000 PPI. In addition, the increase in thickness of the passivation layer between the bottom electrode and the top color filter results in a decrease in the color gamut.

View Article and Find Full Text PDF

Metal oxides are intensively used for multilayered optoelectronic devices such as organic light-emitting diodes (OLEDs). Many approaches have been explored to improve device performance by engineering electrical properties. However, conventional methods cannot enable both energy level manipulation and conductivity enhancement for achieving optimum energy band configurations.

View Article and Find Full Text PDF

We present herein the first report of organic/inorganic hybrid thin-film encapsulation (TFE) developed as an encapsulation process for mass production in the display industry. The proposed method was applied to fabricate a top-emitting organic light-emitting device (TEOLED). The organic/inorganic hybrid TFE has a 1.

View Article and Find Full Text PDF

In this study, it is shown that fluorinated azide, employed as a functional additive to photomultiplication-type organic photodiodes (PM-OPDs), can not only enhance the operational stability by freezing the morphology consisting of matrix polymer/localized acceptor but also stabilize the trapped electron states such that the photomultiplication mechanism can be accelerated further, leading to exceptionally high external quantum efficiency (EQE). The consequent semitransparent OPD consisting of molybdenum oxide (MoO)/Au/MoO/photoactive layer/polyethyleneimine ethoxylated/indium tin oxide (ITO) rendered a maximum EQE of over 500 000% and 370 000% under bottom and top illumination, respectively. Owing to the remarkably high EQE, high specific detectivity of 5.

View Article and Find Full Text PDF

We propose an optimal outcoupling structure of a quantum-dot light-emitting diode (QLED) and present material properties based on numerical calculations via the ray-tracing method, in which light extraction properties are obtained according to the surface wrinkles on a substrate. After analyzing the designed microstructure elements, the optimal model was derived and applied to the QLEDs; consequently, the outcoupling efficiency enhanced by 31%. The liquid crystalline polymer forming the random surface wrinkles not only achieves an excellent light extraction through plasma crosslinking but also facilitates large-area processes.

View Article and Find Full Text PDF

The ability to image pressure distribution over complex three-dimensional surfaces would significantly augment the potential applications of electronic skin. However, existing methods show poor spatial and temporal fidelity due to their limited pixel density, low sensitivity, or low conformability. Here, we report an ultraflexible and transparent electroluminescent skin that autonomously displays super-resolution images of pressure distribution in real time.

View Article and Find Full Text PDF

We demonstrate high-performance down-conversion microlens array (DC-MLA) films for white organic light-emitting diodes (OLEDs). The DC-MLA films are readily fabricated by an imprinting method based on breath figure patterns, which are directly formed on the polymer substrate with a novel concept. The DC-MLA films result in high-quality white light as well as enhanced light outcoupling efficiency for white OLEDs.

View Article and Find Full Text PDF

Organic light-emitting diodes with a quasi-periodic nano-structure (QPS) were fabricated via a combination of laser interference lithography (LIL) and reactive ion etching (RIE). The LIL process was used to generate a periodic pattern, whereas the RIE process was used as a supplement to add randomness to the periodic pattern. The period of the fabricated periodic pattern was determined by finite difference time domain solutions.

View Article and Find Full Text PDF

In this work, we suggest a graphene/ poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composite as a transparent electrode for stabilizing white emission of organic light-emitting diodes (OLEDs). Graphene/PEDOT:PSS composite electrodes have increased reflectance when compared to graphene itself, but their reflectance is still lower than that of ITO itself. Changes in the reflectance of the composite electrode have the advantage of suppressing the angular spectral distortion of white emission OLEDs and achieving an efficiency of 16.

View Article and Find Full Text PDF

White organic light-emitting diodes (WOLEDs) are regarded as the general lighting source. Although color rendering index (CRI) and luminous efficacy are usually in trade-off relation, we will discuss about the optimization of both characteristics, particularly focusing on the spectrum of a blue emitter. The emission at a shorter wavelength is substantially important for achieving very high CRI (> 90).

View Article and Find Full Text PDF

Unlabelled: Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (

Pedot: PSS) films as transparent electrodes for organic light-emitting diodes (OLEDs) are doped with a new solvent 1,3-dimethyl-2-imidazolidinone (DMI) and are optimized using solvent post-treatment. The DMI doped

Pedot: PSS films show significantly enhanced conductivities up to 812.1 S cm(-1) .

View Article and Find Full Text PDF

We propose and fabricate a random light scattering layer for light extraction in organic light-emitting diodes (OLEDs) with silver nanodots, which were obtained by melting silver nanowires. The OLED with the light scattering layer as an internal light extraction structure was enhanced by 49.1% for the integrated external quantum efficiency (EQE).

View Article and Find Full Text PDF

To improve the viewing angle characteristic as well as the light extraction effect of strong microcavity devices, we fabricated a nanoporous polymer film (NPF) as a scattering medium as well as a light extraction component. We designed two types of organic light emitting diodes (OLEDs) with a strong microcavity effect by changing the thickness of the hole transport layer (HTL; e.g.

View Article and Find Full Text PDF

Area-selective external light extraction films based on wrinkle structured films were applied to large transparent organic light-emitting diodes (TOLEDs) with auxiliary metal buses. To be specific, on the external surface of the glass, we selectively formed a wrinkle structured film, which was aligned to the auxiliary metal electrodes. The wrinkle-structured film was patterned using a photo-mask and UV curing, which has the same shape of the auxiliary metal electrodes.

View Article and Find Full Text PDF

An optical functional film applicable to various lighting devices is demonstrated in this study. The phase separation of two immiscible polymers in a common solvent was used to fabricate the film. In this paper, a self-organized lens-like structure is realized in this manner with optical OLED functional film.

View Article and Find Full Text PDF

Special characteristics of wrinkles such as a scattering source and a high surface area are finding use in high-tech applications. UV-crosslinkable prepolymers are occasionally used for fabricating wrinkled films. Wavelength of the wrinkles formed from the prepolymers is several tens and hundreds of micrometers.

View Article and Find Full Text PDF

We examined the light diffusing effects of nano and micro-structures on microcavity designed OLEDs. The results of FDTD simulations and experiments showed that the pillar shaped nano-structure was more effective than the concave micro-structure for light diffusing of microcavity OLEDs. The sharp luminance distribution of the microcavity OLED was changed to near Lambertian luminance distribution by the nano-structure, and light diffusing effects increased with the height of the nano-structure.

View Article and Find Full Text PDF

A random scattering layer (RSL) consisting of a random nano-structure (RNS) and a high refractive index planarization layer (HRI PL) is suggested and demonstrated as an efficient internal light-extracting layer for transparent organic light emitting diodes (TOLEDs). By introducing the RSL, a remarkable enhancement of 40% and 46% in external quantum efficiency (EQE) and luminous efficacy (LE) was achieved without causing deterioration in the transmittance. Additionally, with the use of the RSL, the viewing angle dependency of EL spectra was reduced to a marginal degree.

View Article and Find Full Text PDF

In this study, we investigated the effect of a random nanostructure scattering layer (RSL) on the microcavity and light extraction in organic light emitting diodes (OLEDs). In the case of the conventional OLED, the optical properties change with the thickness of the hole transporting layer (HTL) because of the presence of a microcavity. However, OLEDs equipped with the an RSL showed similar values of external quantum efficiency and luminous efficacy regardless of the HTL thickness.

View Article and Find Full Text PDF

Highly efficient phosphorescent white organic light-emitting diodes (PHWOLEDs) were developed by the doping of phosphorescent blue and red dopants in a spirofluorene-based phosphine oxide host material. A high quantum efficiency of 18.3% and a current efficiency of 34.

View Article and Find Full Text PDF