Publications by authors named "Chul Won Yun"

Introduction: Effective chemotherapy has not yet to be developed for castration-resistant prostate cancer (CRPC). Cell-mediated enzyme prodrug therapy (EPT), including a combination of carboxylesterase (CE) and irinotecan (CPT-11), could be a possible treatment option. This study explored a cell-mediated EPT, including a combination of CE and irinotecan (CPT-11), to inhibit CRPC tumor growth using rabbit CE-overexpressing human TERT-immortalized adipose-derived stem cells (hTERT-ADSC.

View Article and Find Full Text PDF

Effectively targeting cancer stemness is essential for successful cancer therapy. Recent studies have revealed that , a pluripotent stem cell factor, significantly contributes to cancer stem cell (CSC)-like characteristics closely associated with cancer malignancy. However, its contradictory impact on patient survival in specific cancer types, including lung adenocarcinoma (LUAD), underscores the need for more comprehensive research to clarify its functional effect on cancer stemness.

View Article and Find Full Text PDF

Background/aim: Antitumor drug resistance is a major hurdle in treating patients with malignant tumors. Casein kinase 2α (CK2α) expression is highly enhanced in oxaliplatin-resistant CRC cells. We investigated whether CK2α expression is associated with oxaliplatin resistance in CRC cells.

View Article and Find Full Text PDF

It has been proposed that CRPC treatment with reduced systemic toxicity can be achieved by employing genes that express enzymes that activate pharmacological agents. In this paper, we report our study that used human adipose-derived stem cells (ADSC), rabbit CE, and human TRAIL with reduced toxicity to explore how tumor development can be suppressed in CRPC-bearing mouse models. and directional migration of ADSC.

View Article and Find Full Text PDF

Background/aim: Anti-cancer chemotherapy is an effective therapeutic approach. Milk extracellular vesicles (EVs) loaded with chemotherapeutics have a potential anticancer effect by acting as a drug delivery system. Thus, our study aimed to explore the effect of engineered milk extracellular vesicles.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is defined as structural and functional abnormalities of the kidney due to inflammation and fibrosis. We investigated the therapeutic effects of exosomes secreted by melatonin-stimulated mesenchymal stem cells (Exocue) on the functional recovery of the kidney in a CKD mouse model. Exocue upregulated gene expression of micro RNAs (miRNAs) associated with anti-inflammatory and anti-fibrotic effects.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is caused by multiple factors that trigger chronic skin inflammation, including a defective skin barrier, immune cell activation, and microbial exposure. Although melatonin has an excellent biosafety profile and a potential to treat AD, there is limited clinical evidence from controlled trials that support the use of melatonin as an AD treatment. The delivery of melatonin via the transdermal delivery system is also a challenge in designing melatonin-based AD treatments.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the leading causes of cancer-related death due to its aggressive metastasis in later stages. Although there is a growing interest in the tumorigenic role of cellular prion protein (PrP) in the process of metastasis, the precise mechanism behind the cellular communication involving prion proteins remains poorly understood. This study found that hypoxic tumor microenvironment increased the PrP-expressing exosomes from CRC, and these exosomes regulate the CRC cell behavior and tumor progression depending on the expression of PrP.

View Article and Find Full Text PDF

Autophagy is a delicate intracellular degradation process that occurs due to diverse stressful conditions, including the accumulation of damaged proteins and organelles as well as nutrient deprivation. The mechanism of autophagy is initiated by the creation of autophagosomes, which capture and encapsulate abnormal components. Afterward, autophagosomes assemble with lysosomes to recycle or remove degradative cargo.

View Article and Find Full Text PDF

Renal fibrosis is one of the main causes of chronic kidney disease. Many studies have focused on fibroblasts and myofibroblasts involved in renal fibrogenesis. Recently, several studies have reported that renal proximal tubule epithelial cells are possible initiators of renal fibrosis.

View Article and Find Full Text PDF

Background/aim: Cancer stem cell characteristics and drug resistance of colorectal cancer are associated with failure of cancer treatment. In this study, we investigated the effects of PrP on cancer stem cell characteristics, migration, invasion, and drug resistance of 5FU-resistant CRC cells.

Materials And Methods: PrP negative and PrP positive cells were isolated from 5FU-resistant CRC cells using magnetic activated cell sorting.

View Article and Find Full Text PDF

Renal fibrosis, a major risk factor for kidney failure, can lead to chronic kidney disease (CKD) and is caused by cytoskeleton reorganization and mitochondrial dysfunction. In this study, we investigated the potential of melatonin treatment to reduce renal fibrosis by recovering the cytoskeleton reorganization and mitochondrial dysfunction. We found that miR-4516 expression was downregulated in the renal cortex of CKD mice and -cresol-treated TH1 cells.

View Article and Find Full Text PDF

Heat shock proteins (HSPs) constitute a large family of molecular chaperones classified by their molecular weights, and they include HSP27, HSP40, HSP60, HSP70, and HSP90. HSPs function in diverse physiological and protective processes to assist in maintaining cellular homeostasis. In particular, HSPs participate in protein folding and maturation processes under diverse stressors such as heat shock, hypoxia, and degradation.

View Article and Find Full Text PDF

Natural products (NPs) are useful sources of bioactive compounds and play important roles in the development and discovery of new drugs for diverse human diseases. Most natural products originate from terrestrial species, but diverse marine organisms are another source of new agents for cancer therapy. Natural products derived from marine organisms show diverse pharmacological activities via bioactive secondary metabolites.

View Article and Find Full Text PDF

Background/aim: Hypoxia promotes tumor proliferation and metastasis in colorectal cancer (CRC). Since the tumor microenvironment is generally characterized by hypoxia, its understanding is important for cancer therapy. We hypothesized that hypoxia promotes the mitochondrial function, mobility, and proliferation of CRC by up-regulating peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α).

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are optimal sources of autologous stem cells for cell-based therapy in chronic kidney disease (CKD). However, CKD-associated pathophysiological conditions, such as endoplasmic reticulum (ER) stress and oxidative stress, decrease MSC function. In this work, we study the protective effect of pioglitazone on MSCs isolated from CKD patients (CKD-MSCs) against CKD-induced ER stress.

View Article and Find Full Text PDF
Article Synopsis
  • Anti-cancer drug resistance poses a significant challenge for colorectal cancer (CRC) patients, particularly with 5-fluorouracil (5FU) treatment.
  • Recent studies indicate that CRC cells can become resistant to 5FU, and in such cells, PGC-1α expression is notably higher compared to sensitive cells, leading to enhanced mitochondrial functions and reduced cell death.
  • This research suggests that targeting PGC-1α could offer new strategies to combat drug resistance in CRC patients.
View Article and Find Full Text PDF

Kidney disease can be either acute kidney injury (AKI) or chronic kidney disease (CKD) and it can lead to the development of functional organ failure. Mesenchymal stem cells (MSCs) are derived from a diverse range of human tissues. They are multipotent and have immunomodulatory effects to assist in the recovery from tissue injury and the inhibition of inflammation.

View Article and Find Full Text PDF

Cardiovascular disease usually triggers coronary heart disease, stroke, and ischemic diseases, thus promoting the development of functional failure. Mesenchymal stem cells (MSCs) are cells that can be isolated from various human tissues, with multipotent and immunomodulatory characteristics to help damaged tissue repair and avoidance of immune responses. Much research has proved the feasibility, safety, and efficiency of MSC-based therapy for cardiovascular disease.

View Article and Find Full Text PDF

Although autologous human mesenchymal stem cells (hMSCs) are a promising source for regenerative stem cell therapy in chronic kidney disease (CKD), the barriers associated with pathophysiological conditions limit therapeutic applicability to patients. We confirmed that level of cellular prion protein (PrP) in serum was decreased and mitochondria function of CKD-derived hMSCs (CKD-hMSCs) was impaired in patients with CKD. We proved that treatment of CKD-hMSCs with tauroursodeoxycholic acid (TUDCA), a bile acid, enhanced the mitochondrial function of these cells through regulation of PINK1-PrP-dependent pathway.

View Article and Find Full Text PDF

Autophagy is an intracellular degradative process that occurs under several stressful conditions, including organelle damage, the presence of abnormal proteins, and nutrient deprivation. The mechanism of autophagy initiates the formation of autophagosomes that capture degraded components and then fuse with lysosomes to recycle these components. The modulation of autophagy plays dual roles in tumor suppression and promotion in many cancers.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSC) could be a candidate for cell-based therapy in chronic kidney disease (CKD); however, the uremic toxin in patients with CKD restricts the therapeutic efficacy of MSCs. To address this problem, we explored the effect of pioglitazone as a measure against exposure to the uremic toxin -cresol (PC) in MSCs. Under PC exposure conditions, apoptosis of MSCs was induced, as well as PC-induced dysfunction of mitochondria by augmentation of mitofusion, reduction of mitophagy, and inactivation of mitochondrial complexes I and IV.

View Article and Find Full Text PDF

Melatonin suppresses tumor development. However, the exact relationship between melatonin and cancer stem cells (CSCs) is poorly understood. This study found that melatonin inhibits colon CSCs by regulating the PrP -Oct4 axis.

View Article and Find Full Text PDF