African swine fever (ASF) is an economically devastating viral disease of pigs caused by the ASF virus (ASFV). The rapid global spread of ASF has increased the demand for ASF diagnostics to be readily available and accessible. No commercial ASF enzyme-linked immunosorbent assay (ELISA) kits are manufactured and licensed in North America.
View Article and Find Full Text PDFAfrican trypanosomiasis, a neglected tropical disease, is caused by diverse species of the protozoan parasite belonging to the genus . Although anti-trypanosomal medications exist, the increase in drug resistance and persistent antigenic variation has necessitated the development of newer and more efficacious therapeutic agents which are selectively toxic to the parasite. In this study, we assessed the trypanocidal efficacy of leaf extract (-extract) .
View Article and Find Full Text PDFAntibody-based lateral flow assay (LFA) is a quick and inexpensive tool used to detect pathogens in field samples, especially in hard-to-reach remote areas that may have limited access to central laboratories during an outbreak or surveillance. In this study, we investigated the ability of a commercially available LFA, PenCheck, to detect African swine fever virus (ASFV) in clinical samples derived from pigs infected with highly virulent ASFV strains. The assay was specific and positively identified the majority of pigs showing high fever during the early stages (between 3 and 5 days) of infection.
View Article and Find Full Text PDFAfrican swine fever (ASF) has spread across the globe and has reached closer to North America since being reported in the Dominican Republic and Haiti. As a result, surveillance measures have been heightened and the utility of alternative samples for herd-level monitoring and dead pig sampling have been investigated. Passive surveillance based on the investigation of dead pigs, both domestic and wild, plays a pivotal role in the early detection of an ASF incursion.
View Article and Find Full Text PDFAfrican swine fever (ASF) is one of the most important viral diseases of pigs caused by the ASF virus (ASFV). The virus is highly stable over a wide range of temperatures and pH and can survive in meat and meat products for several months, leading to long-distance transmission of ASF. Whole blood, serum, and organs from infected pigs are used routinely as approved sample types in the laboratory diagnosis of ASF.
View Article and Find Full Text PDFPI3Kδ is critical in generating humoral and regulatory immune responses. In this study, we determined the impact of PI3Kδ in immunity to , an African trypanosome that can manipulate and evade Ab responses critical for protection. Upon infection with , PI3Kδ mice lacking PI3Kδ activity paradoxically show a transient enhancement in early control of parasitemia, associated with impaired production of regulatory IL-10 by B cells in the peritoneum.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), calls for prompt and accurate diagnosis and rapid turnaround time for test results to limit transmission. Here, we evaluated two independent molecular assays, the Biomeme SARS-CoV-2 test, and the Precision Biomonitoring TripleLock SARS-CoV-2 test on a field-deployable point-of-care real-time PCR instrument, Franklin three9, in combination with Biomeme M1 Sample Prep Cartridge Kit for RNA 2.0 (M1) manual extraction system for rapid, specific, and sensitive detection of SARS-COV-2 in cell culture, human, and animal clinical samples.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
May 2021
Introduction: Insulin-like peptide 5 (INSL5) is a peptide hormone with proposed actions in glucose homeostasis and appetite regulation its cognate receptor, relaxin family peptide receptor 4 (RXFP4). Here, we look for evidence for their involvement in the immune system using a mouse model.
Methods: we queried public databases for evidence of expression of INSL5-RXFP4 in immune system tissues/cells (NCBI's SRA and GeoProfiles) and disorders (EMBO-EBI) and performed phylogenetic footprinting to look for evidence that they are regulated by immune-associated transcription factors (TFs).
Parasitic diseases still constitute a major global health problem affecting billions of people around the world. These diseases are capable of becoming chronic and result in high morbidity and mortality. Worldwide, millions of people die each year from parasitic diseases, with the bulk of those deaths resulting from parasitic protozoan infections.
View Article and Find Full Text PDFTransbound Emerg Dis
March 2021
African swine fever (ASF) continues to spread across Asia, devastating pig populations. The disease is nearly 100% fatal in pigs, and currently, there is no effective vaccine available. Therefore, early detection of ASF is critical for effective disease control.
View Article and Find Full Text PDFThere is currently no clinically effective vaccine against cutaneous leishmaniasis because of poor understanding of the Ags that elicit protective CD4 T cell immunity. In this study, we identified a naturally processed peptide (DLD) that is derived from dihydrolipoyl dehydrogenase (DLD) protein. DLD is conserved in all pathogenic species, is expressed by both the promastigote and amastigote stages of the parasite, and elicits strong CD4 T cell responses in mice infected with We generated I-A-DLD tetramer and identified DLD-specific CD4 T cells at clonal level.
View Article and Find Full Text PDFFront Immunol
November 2020
Parasites, including African trypanosomes, utilize several immune evasion strategies to ensure their survival and completion of their life cycles within their hosts. The defense factors activated by the host to resolve inflammation and restore homeostasis during active infection could be exploited and/or manipulated by the parasites in an attempt to ensure their survival and propagation. This often results in the parasites evading the host immune responses as well as the host sustaining some self-inflicted collateral tissue damage.
View Article and Find Full Text PDFIt is known that infection in mice is associated with increased production of proinflammatory cytokines by macrophages and monocytes. However, the intracellular signaling pathways leading to the production of these cytokines still remain unknown. In this paper, we have investigated the innate receptors and intracellular signaling pathways that are associated with -induced proinflammatory cytokine production in macrophages.
View Article and Find Full Text PDFSemaphorin 3E (Sema3E) is a secreted protein that was initially discovered as a neuronal guidance cue. Recent evidence showed that Sema3E plays an essential role in regulating the activities of various immune cells. However, the exact role of Sema3E in macrophage function, particularly during inflammation, is not fully understood.
View Article and Find Full Text PDFNK cells are key innate immune cells that play critical roles in host defense. Although NK cells have been shown to regulate immunity to some infectious diseases, their role in immunity to has not been investigated. NK cells are vital sources of IFN-γ and TNF-α; two key cytokines that are known to play important roles in resistance to African trypanosomes.
View Article and Find Full Text PDFDiminazene aceturate (Berenil) is the most commonly used trypanolytic agent in livestock. We previously showed that Berenil downregulates Trypanosoma congolense (T. congolense)-induced cytokine production in macrophages both in vitro and in vivo.
View Article and Find Full Text PDFMyeloid-derived suppressor cells (MDSCs) are a heterogeneous population of bone marrow-derived myeloid cells that have immune-suppressive activities. These cells have been reported to suppress T cell immunity against tumors as well as in some parasitic and bacterial infections. However, their role during infection has not been studied.
View Article and Find Full Text PDFAfrican trypanosomiasis (sleeping sickness) poses serious threat to human and animal health in sub-Saharan Africa. Because there is currently no vaccine for preventing this disease and available drugs are not safe, understanding the mechanisms that regulate resistance and/or susceptibility to the disease could reveal novel targets for effective disease therapy and prevention. Thymic stromal lymphopoietin (TSLP) plays a critical role in driving Th2 immune response.
View Article and Find Full Text PDFUnlabelled: Visceral leishmaniasis (VL) is associated with severe immune dysfunction and if untreated leads to death. Because the liver is one of the primary target organs in VL, unraveling the mechanisms governing the local hepatic immune response is important for understanding the immunopathogenesis of VL. We previously reported that mice with inactivating knockin mutation in the p110δ gene (p110δ(D910A) ) are resistant to VL, due in part to impaired regulatory T-cell (Treg) expansion.
View Article and Find Full Text PDFBackground: Bam32, a 32 kDa adaptor molecule, plays important role in B cell receptor signalling, T cell receptor signalling and antibody affinity maturation in germinal centres. Since antibodies against trypanosome variant surface glycoproteins (VSG) are critically important for control of parasitemia, we hypothesized that Bam32 deficient (Bam32-/-) mice would be susceptible to T. congolense infection.
View Article and Find Full Text PDFWe previously showed that CD8+ T cells are required for optimal primary immunity to low dose Leishmania major infection. However, it is not known whether immunity induced by low dose infection is durable and whether CD8+ T cells contribute to secondary immunity following recovery from low dose infection. Here, we compared primary and secondary immunity to low and high dose L.
View Article and Find Full Text PDFBALB/c mice are highly susceptible to experimental intraperitoneal Trypanosoma congolense infection. However, a recent report showed that these mice are relatively resistant to primary intradermal low-dose infection. Paradoxically, repeated low-dose intradermal infections predispose mice to enhanced susceptibility to an otherwise noninfectious dose challenge.
View Article and Find Full Text PDFAlthough diminazene aceturate (Berenil) is widely used as a trypanolytic agent in livestock, its mechanisms of action remain poorly understood. We previously showed that Berenil treatment suppresses pro-inflammatory cytokine production by splenic and liver macrophages leading to a concomitant reduction in serum cytokine levels in mice infected with Trypanosoma congolense or challenged with LPS. Here, we investigated the molecular mechanisms through which Berenil alters pro-inflammatory cytokine production by macrophages.
View Article and Find Full Text PDFBackground: Trypanosoma congolense are extracellular and intravascular blood parasites that cause debilitating acute or chronic disease in cattle and other domestic animals. Diminazene aceturate (Berenil) has been widely used as a chemotherapeutic agent for trypanosomiasis in livestock since 1955. As in livestock, treatment of infected highly susceptible BALB/c mice with Berenil leads to rapid control of parasitemia and survival from an otherwise lethal infection.
View Article and Find Full Text PDF