Publications by authors named "Chujun Zheng"

Nickel-rich layered oxide cathode material LiNiCoMnO (NCM) has emerged as a promising candidate for next-generation lithium-ion batteries (LIBs). These cathode materials possess high theoretical specific capacity, fast electron/ion transfer rate, and high output voltage. However, their potential is impeded by interface instability, irreversible phase transition, and the resultant significant capacity loss, limiting their practical application in LIBs.

View Article and Find Full Text PDF

Frequency-mixing technology has been widely used to precisely identify magnetic nanoparticles in applications of quantitative biomedical detection in recent years. Examples include immune adsorption, lateral flow assays (LFAs), and biomagnetic imaging. However, the signals of magnetic response generated by adjacent magnetic samples interfere with each other owing to the small spacing between them in applications involving multi-sample detection (such as the LFA and multiplexing detection).

View Article and Find Full Text PDF

Solid-state lithium metal batteries (SSLMBs) are attracting increasing attentions as one of the promising next-generation technologies due to their high-safety and high-energy density. Their practical application, however, is hindered by lithium dendrite growth and propagation in solid-state electrolytes (SSEs). Herein, an in situ grain boundary modification strategy relying on the reaction between Li TiO (LTO) and Ta-substituted garnet-type electrolyte (LLZT) is developed, which forms LaTiO along with lesser amounts of LTO/Li ZrO at the grain boundaries (GBs).

View Article and Find Full Text PDF

China has controlled the nationwide spread of COVID-19 since April 2020, but it is still facing an enormous threat of disease resurgence originating from infected international travelers. Taking the rapid transmission and the mutation of SARS-CoV-2 into consideration, the current status would be easily jeopardized if sporadic locally-transmitted individuals are not identified at an early stage. Clinical diagnosis is the gold standard for COVID-19 surveillance, but it is hard to screen presymptomatic or asymptomatic cases in those who have not exhibited symptoms.

View Article and Find Full Text PDF

In this study, we developed a novel magnetic lateral flow assay based on iron oxide decorated with platinum probes (FeO@Pt) for dual-mode detection of gastrin-17 (G-17), which is one of the main biomarkers for early gastric cancer diagnosis. The probe material exhibits both magnetic properties and peroxidase activity. The peroxidase activity enhances the intensity of the brownish coloring of the FeO@Pt probes on the test strip, with a limit of detection of 10 pg mL using the naked eye, which is remarkable for colorimetric lateral flow assays.

View Article and Find Full Text PDF

Nanomaterials, especially superparamagnetic nanomaterials, have recently played essential roles in point-of-care testing due to their intrinsic magnetic, electrochemical, and optical properties. The inherent superparamagnetism of magnetic nanoparticles makes them highly sensitive for quantitative detection. Among the various magnetic detection technologies, frequency mixing technology (FMT) technology is an emerging detection technique in the nanomedical field.

View Article and Find Full Text PDF

Microfluidic paper-based analytical devices (μPADs) have developed rapidly in recent years, because of their advantages, such as small sample volume, rapid detection rates, low cost, and portability. Due to these characteristics, they can be used for in vitro diagnostics in the laboratory, or in the field, for a variety of applications, including food evaluation, disease screening, environmental monitoring, and drug testing. This review will present various detection methods employed by μPADs and their respective applications for the detection of target analytes.

View Article and Find Full Text PDF

Recently, lateral flow assay (LFA) for nucleic acid detection has drawn increasing attention in the point-of-care testing fields. Due to its rapidity, easy implementation, and low equipment requirement, it is well suited for use in rapid diagnosis, food authentication, and environmental monitoring under source-limited conditions. This review will discuss two main research directions of lateral flow nucleic acid tests.

View Article and Find Full Text PDF

By using the Hilbert-Huang transform, a novel method is proposed to perform the task of particle sizing and axial locating directly from in-line digital holograms rather than reconstructing the optical field. The intensity distribution of the particle hologram is decomposed into intrinsic mode functions (IMFs) by the empirical mode decomposition. From the Hilbert spectrum of these IMFs, the axial location of the particle can be calculated by fitting the spectrum to a straight line, and the particle size can be derived from the singularities of the spectrum.

View Article and Find Full Text PDF

We investigate the effects of structural periodicity on wave localization in one-dimensional periodic-on-average disordered systems and derive two relations from the properties of the spectral periodicity and symmetry of the underlying periodic systems. These two relations predict equal localization lengths between disordered systems with different randomness. Comparisons with numerically simulated results show good agreement.

View Article and Find Full Text PDF