Publications by authors named "Chuilin Lai"

Background: Gastric cancer (GC) is the fourth most common cause of cancer-related death and the fifth most frequent malignant cancer, especially advanced GC. Carboxypeptidase X member 1 (CPXM1) is an epigenetic factor involved in many physiological processes, including osteoclast differentiation and adipogenesis. Several studies have shown the association of CPXM1 with multiple tumors; however, the mechanism of CPXM1 involvement in the progression of GC is yet to be characterized.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) is a malignancy with the worst prognosis that seriously threatens human health, especially in East Asia. Apolipoprotein C1 () belongs to the apolipoprotein family. In addition, has been associated with various tumors.

View Article and Find Full Text PDF

Coating of metal-organic frameworks (MOFs) on flexible substrates is a crucial technology for applications such as purification/separation, sensing, and catalysis. In this work, a facile coordination replication strategy was developed to coat various MOFs onto flexible fibrous materials where a dense layer of an insoluble precursor template, such as a layered hydroxide salt, was first deposited onto a fiber substrate via a mild interfacial reaction and then rapidly transformed into a MOF coating in a ligand solution at room temperature. Spatiotemporal harmonization of solid precursor dissolution and MOF crystallization enabled precise replication of the precursor layer morphology to form a continuous MOF coating composed of intergrown crystals.

View Article and Find Full Text PDF

A flexible slippery membrane (FSM) with tunable morphology and high elastic deformability has been developed by infusing perfluoropolyether (PFPE) into a fluorinated-copolymer-modified thermoplastic polyurethane (TPU) nanofiberous membrane. To immobilize PFPE in TPU matrix, we synthesized a fluorinated-copolymer poly(DFMA-co-IBOA-co-LMA) with low surface energy, high chemical affinity to PFPE, adequate flexibility, and strong physical adhesion on TPU. Upon external tensile stress, the as-prepared FSM can realize a real-time manipulation of water sliding and coalescence on it.

View Article and Find Full Text PDF

It is challenging to explore a unified solution for the treatment of oily wastewater from complex sources. Thus, membrane materials with flexible separation schemes are highly desired. Herein, we fabricated a smart membrane by electrospinning TiO2 doped polyvinylidene fluoride (PVDF) nanofibers.

View Article and Find Full Text PDF

Biomaterials are being extensively used in various biomedical fields; however, they are readily infected with microorganisms, thus posing a serious threat to the public health care. We herein presented a facile route to the antibacterial modification of an important A-B-A type biomaterial using poly (ethylene glycol) methyl ether (mPEG)- poly(ε-caprolactone) (PCL)-mPEG as a typical model. Inexpensive, commercial bis(2-hydroxyethyl) methylammonium chloride (DMA) was adopted as an antibacterial unit.

View Article and Find Full Text PDF

To develop an efficient water-collecting surface that integrates both fast water-capturing and easy drainage properties is of high current interest for addressing global water issues. In this work, a superhydrophobic surface was fabricated on cotton fabric via manipulation of both the surface roughness and surface energy. This was followed by a subsequent spray coating of TiO2 nanosol that created light-induced superhydrophilic bumps with a unique raised structure as a result of the interfacial tension of the TiO2 nanosol sprayed on the superhydrophobic fiber surface.

View Article and Find Full Text PDF

Using alkaline pH adjustment, the reaction between graphene oxide and L-ascorbic acid led to the formation of a carbocatalyst film with numerous graphene edges protruding out of basal planes, which had a markedly enhanced carbocatalytic activity for conversion of 4-nitrophenol to 4-aminophenol, as compared to that of the carbocatalyst counterpart without involving pH mediation.

View Article and Find Full Text PDF

Electrospun anatase-phase TiO2 nanofibers with desired morphological structure and relatively high specific surface area are expected to outperform other nanostructures (e.g., powder and film) of TiO2 for various applications (particularly dye-sensitized solar cell and photo-catalysis).

View Article and Find Full Text PDF

This paper studies the mechanism of the formation of carbon nanostructures on carbon nanofibers with Pd nanoparticles by using different carbon sources. The carbon nanofibers with Pd nanoparticles were produced by carbonizing electrospun polyacrylonitrile (PAN) nanofibers including Pd(Ac)(2). Such PAN-based carbon nanofibers were then used as substrates to grow hierarchical carbon nanostructures.

View Article and Find Full Text PDF

Nylon-4,6 nanofibres with diameters ranging from about 1 µm down to 1 nm were prepared by electrospinning. The fibre diameter was varied by adjusting the concentration of the polymer solution. Electrospinning of a concentrated solution of as high as 20% nylon-4,6 by weight in formic acid produced a ribbon-like electrospun fibre with a ribbon width of about 850 nm.

View Article and Find Full Text PDF