Publications by authors named "Chuigen Guo"

Isocyanate-free polyurethane adhesives have attracted considerable attention as a promising environmentally friendly alternative. However, their progress has been hindered by insufficient bonding performance and weak solvent resistance, as well as the laborious synthesis processes involved. Herein, we successfully synthesized a high-performance lignin-based non-isocyanate adhesives (LNIPUs-G) through a one-pot strategy that combines the polycondensation of carbonate groups with polyether amines and aldehyde-amine chemistry.

View Article and Find Full Text PDF

The development of a cost-effective and efficient bifunctional electrode for overall water splitting holds significant importance in accelerating the sustainable advancement of hydrogen energy. The present study involved a bifunctional catalytic electrode was prepared by loading NiCo-modified 1T/2H MoS onto carbonized wood (NiCo-MoS-CW) using the hydrothermal and electrodeposition techniques. The XPS analysis revealed that NiCo-modified MoS exhibited a weak electron characteristic, which facilitated the ionization of HO and significantly enhanced the Volmer step.

View Article and Find Full Text PDF

Electrically conductive metal-organic frameworks (EC-MOFs) have attracted great attentions in electrochemical fields, but their practical application is limited by their hard-to-shape powder form. The aims was to integrate continuously nucleated EC-MOFs on natural wood cellulose scaffold to develop biobased EC-MOFs membrane with robust flexibility and improved electrochemical performance for wearable supercapacitors. EC-MOF materials (NiCAT or CuCAT) were successfully incorporated onto porous tempo-oxidized wood (TOW) scaffold to create ultrathin membranes through electrostatic force-mediated interfacial growth and simple room-temperature densification.

View Article and Find Full Text PDF

Multifunctional biofilms with early fire-warning capabilities are highly necessary for various indoor and outdoor applications, but a rational design of intelligent fire alarm films with strong weather resistance remains a major challenge. Herein, a multiscale hierarchical biofilm based on lignocellulose nanofibrils (LCNFs), carbon nanotubes (CNTs) and TiO was developed through a vacuum-assisted alternate self-assembly and dipping method. Then, an early fire-warning system that changes from an insulating state to a conductive one was designed, relying on the rapid carbonization of LCNFs together with the unique electronic excitation characteristics of TiO.

View Article and Find Full Text PDF

Biopolymer/silica nanocomposite aerogels are highly attractive as thermally insulating materials for prevailing energy-saving engineering but are usually plagued by their lack of mechanical strength and environmental stability. Lignin is an appealing plant phenolic biopolymer due to its natural abundance, high stiffness, water repellency, and thermostability. However, integrating lignin and silica into high-performance 3D hybrid aerogels remains a substantial challenge due to the unstable co-sol process.

View Article and Find Full Text PDF

Magnetic imprinted N-doped P25/FeO-graphene oxide (MIGNT) was prepared with methyl orange as the dummy template and pyrrole as functional monomer for catalytic degradation of Congo red (CR). Hummers method and the hydrothermal method were used to synthesize FeO-GO and N-doped P25, respectively. The results of adsorption and degradation experiments showed that the adsorption capacity and catalytic degradation ability of the imprinted composite for CR were obviously higher than those of a non-imprinted one.

View Article and Find Full Text PDF