Publications by authors named "Chui Yu Chan"

The presence of toxic organic pollutants in aquatic environments poses significant threats to human health and global ecosystems. Photocatalysis that enables in situ production and activation of H O presents a promising approach for pollutant removal; however, the processes of H O production and activation potentially compete for active sites and charge carriers on the photocatalyst surface, leading to limited catalytic performance. Herein, a hierarchical 2D/2D heterojunction nanosphere composed of ultrathin BiOBr and BiOI nanosheets (BiOBr/BiOI) is developed by a one-pot microwave-assisted synthesis to achieve in situ H O production and activation for efficient photocatalytic wastewater treatment.

View Article and Find Full Text PDF

Hydrogels, as one of the most feasible soft biomaterials, have gained considerable attention in therapeutic applications by virtue of their tunable properties including superior patient compliance, good biocompatibility and biodegradation, and high cargo-loading efficiency. However, hydrogel application is still limited by some challenges like inefficient encapsulation, easy leakage of loaded cargoes, and the lack of controllability. Recently, nanoarchitecture-integrated hydrogel systems were found to be therapeutics with optimized properties, extending their bioapplication.

View Article and Find Full Text PDF

Phototheranostic based on photothermal therapy (PTT) and photoacoustic imaging (PAI), as one of avant-garde medical techniques, have sparked growing attention because it allows noninvasive, deeply penetrative, and highly selective and effective therapy. Among a variety of phototheranostic nanoagents, single-component inorganic nanostructures are found to be novel and attractive PAI and PTT combined nanotheranostic agents and received tremendous attention, which not only exhibit structural controllability, high tunability in physiochemical properties, size-dependent optical properties, high reproducibility, simple composition, easy functionalization, and simple synthesis process, but also can be endowed with multiple therapeutic and imaging functions, realizing the superior therapy result along with bringing less foreign materials into body, reducing systemic side effects and improving the bioavailability. In this review, according to their synthetic components, conventional single-component inorganic nanostructures are divided into metallic nanostructures, metal dichalcogenides, metal oxides, carbon based nanostructures, upconversion nanoparticles (UCNPs), metal organic frameworks (MOFs), MXenes, graphdiyne and other nanostructures.

View Article and Find Full Text PDF

Bacterial cellulose, or microbial cellulose, had gained tremendous interest as a hydrogel material for biomedical purposes in the recent years. It has many intrinsic physiological properties like fibrous nature, ultrafine 3D nanostructure network, high water holding capacity, excellent mechanical properties, biocompatibility and biodegradability that allow for the use of such purposes, and the lacking properties can be easily supplemented or enhanced by modifications. In this review, some of the biomedical applications that uses bacterial cellulose are discussed.

View Article and Find Full Text PDF

Flexible polymeric patches find widespread applications in biomedicine because of their biological and tunable features including excellent patient compliance, superior biocompatibility and biodegradation, as well as high loading capability and permeability of drug. Such polymeric patches are classified into microneedles (MNs), hydrogel, microcapsule, microsphere and fiber depending on the formed morphology. The combination of nanomaterials with polymeric patches allows for improved advantages of increased curative efficacy and lowered systemic toxicity, promoting on-demand and regulated drug administration, thus providing the great potential to their clinic translation.

View Article and Find Full Text PDF