This study develops a multi-functional hydrogel with a dual injection system based on the adhesive and self-healing properties of the byssus excretion found in mussels. Through precisely controlling the composite cross-linking hydrophobic association (HA) structure composed of A and B solutions, a high-strength, temperature-sensitive injectable hydrogel can be obtained, and it has good self-healing properties. The main composition of A solution contains the surfactant SDS, which can form amphiphilic micelles, the strength increasing component stearyl methacrylate (C18), and NIPAAm, which provides thermo-sensitivity.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
March 2008
A new immobilized metal ion affinity (IMA) adsorbent containing superparamagnetic nanoparticles and coated with hydrophilic resins are proposed here to improve the purification of His-tagged proteins. The magnetic chelating resin was prepared by radical polymerization of magnetite (Fe3O4), styrene, divinyl benzene (DVB) and glycidyl methacrylate-iminodiacetic acid (GMA-IDA) in ethanol/water medium. IDA is immobilized on magnetite as a ligand and pre-charged Cu2+, Zn2+ and Ni2+ as metal ions.
View Article and Find Full Text PDFA chelating resin, crosslinked poly(glycidyl methacrylate-aspartic acid) (PASP), was synthesized by anchoring sodium aspartate to crosslinked poly(glycidyl methacrylate) for the recovery of Cu2+ and Cd2+ from aqueous solutions. The resin was characterized by Fourier transform infrared spectroscopy, scanning electron microscope and mass balance. In non-competitive conditions, the adsorptions tended toward equilibrium at 60 min and the equilibrium adsorption capacities were 1.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
August 2005
The aim of this study was to develop a simple and rapid method for purification of ultrapure supercoiled plasmid DNA with high yields from bacterial cultures. Nanosized superparamagnetic nanoparticles (Fe3O4) were prepared by chemical precipitation method using Fe2+, Fe3+ salt, and ammonium hydroxide under a nitrogen atmosphere. The surface of Fe3O4 nanoparticles was modified by coating with the multivalent cationic agent, polyethylenimine (PEI).
View Article and Find Full Text PDF