Publications by authors named "Chugunova A"

tRNA genes exist in multiple copies in the genome of all organisms across the three domains of life. Besides the sequence differences across tRNA copies, extensive post-transcriptional modification adds a further layer to tRNA diversification. Whilst the crucial role of tRNAs as adapter molecules in protein translation is well established, whether all tRNAs are actually expressed, and whether the differences across isodecoders play any regulatory role is only recently being uncovered.

View Article and Find Full Text PDF

Ribosomes are produced in large quantities during oogenesis and are stored in the egg. However, the egg and early embryo are translationally repressed. Here, using mass spectrometry and cryo-electron microscopy analyses of ribosomes isolated from zebrafish (Danio rerio) and Xenopus laevis eggs and embryos, we provide molecular evidence that ribosomes transition from a dormant state to an active state during the first hours of embryogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Williams-Beuren syndrome (WBS) is caused by a deletion of genes on chromosome 7, leading to a variety of health issues due to protein malfunction.
  • The role of the protein methyltransferase WBSCR27 in WBS remains unclear, prompting researchers to create gene knockout mouse cell lines to identify its methylation targets.
  • Through structural analysis, they discovered that WBSCR27 has a characteristic Class I methyltransferase structure, and binding to S-adenosyl-L-homocysteine (SAH) helps form a substrate binding site, suggesting areas for future investigation.
View Article and Find Full Text PDF

Cell fate transitions depend on balanced rewiring of transcription and translation programs to mediate ordered developmental progression. Components of the nonsense-mediated mRNA decay (NMD) pathway have been implicated in regulating embryonic stem cell (ESC) differentiation, but the exact mechanism is unclear. Here we show that NMD controls expression levels of the translation initiation factor and its premature termination codon-encoding isoform ( ).

View Article and Find Full Text PDF

Background: The problem of pregnancy losses and infertility in autoimmune pathology is one of the most urgent problems of modern reproductive medicine. Antiphospholipid antibodies (aPL) are very often connected with reproductive failures such as miscarriage, antenatal fetal death, preeclampsia and even infertility and failure of fertilization (IVF) program.

Aim: To evaluate the difference in immune status of aPL-positive women with infertility compared to healthy women and explain the possible mechanism of pathological effects of aPL, a correlation analysis between the level of aPL and the lymphocytes subpopulation was performed.

View Article and Find Full Text PDF

Poly(rC)-binding protein 2 (PCBP2, hnRNP E2) is one of the most abundant RNA-binding proteins in mammalian cells. In humans, it exists in seven isoforms, which are assumed to play similar roles in cells. The protein is shown to bind 3'-untranslated regions (3'-UTRs) of many mRNAs and regulate their translation and/or stability, but nothing is known about the functional consequences of PCBP2 binding to 5'-UTRs.

View Article and Find Full Text PDF

Genes coding for small peptides have been frequently misannotated as long noncoding RNA (lncRNA) genes. Here we have demonstrated that one such transcript is translated into a 56-amino-acid-long peptide conserved in chordates, corroborating the work published while this manuscript was under review. The Mtln peptide could be detected in mitochondria of mouse cell lines and tissues.

View Article and Find Full Text PDF

Methylation of nucleotides in ribosomal RNAs (rRNAs) is a ubiquitous feature that occurs in all living organisms. Identification of all enzymes responsible for rRNA methylation, as well as mapping of all modified rRNA residues, is now complete for a number of model species, such as Escherichia coli and Saccharomyces cerevisiae. Recent high-resolution structures of bacterial ribosomes provided the first direct visualization of methylated nucleotides.

View Article and Find Full Text PDF
Article Synopsis
  • Telomerase elongates single-stranded DNA at chromosome ends, crucial for preserving genome integrity in eukaryotes.
  • Abnormal telomerase activity can cause uncontrolled cell division, while reduced activity is linked to aging and cell death-related diseases.
  • This study presents the structures of the N-terminal domain of telomerase's catalytic subunit from a heat-tolerant yeast, revealing how its residues interact with telomerase RNA and influence heteroduplex size during DNA synthesis.
View Article and Find Full Text PDF

Peptides encoded by short open reading frames (sORFs) are usually defined as peptides ≤100 aa long. Usually sORFs were ignored by automatic genome annotation programs due to the high probability of false discovery. However, improved computational tools along with a high-throughput RIBO-seq approach identified a myriad of translated sORFs.

View Article and Find Full Text PDF

Genome sequencing now progressing much faster than our understanding of the majority of gene functions. Studies of physiological functions of various genes would not be possible without the ability to manipulate the genome. Methods of genome engineering can now be used to inactivate a gene to study consequences, introduce heterologous genes into the genome for scientific and biotechnology applications, create genes coding for fusion proteins to study gene expression, protein localization, and molecular interactions, and to develop animal models of human diseases to find appropriate treatment.

View Article and Find Full Text PDF

N6-methyladenosine (m(6)A) is ubiquitously present in the RNA of living organisms from Escherichia coli to humans. Methyltransferases that catalyze adenosine methylation are drastically different in specificity from modification of single residues in bacterial ribosomal or transfer RNA to modification of thousands of residues spread among eukaryotic mRNA. Interactions that are formed by m(6)A residues range from RNA-RNA tertiary contacts to RNA-protein recognition.

View Article and Find Full Text PDF

In this study, 2-formylpyridine thiosemicarbazones and three different heterocyclic pharmacophores were combined to prepare thiosemicarbazone–piperazine mPip-FTSC (HL1) and mPip-dm-FTSC (HL2), thiosemicarbazone–morpholine Morph-FTSC (HL3) and Morph-dm-FTSC (HL4), thiosemicarbazone–methylpyrrole-2-carboxylate hybrids mPyrr-FTSC (HL5) and mPyrr-dm-FTSC (HL6) as well as their copper(II) complexes [CuCl(mPipH-FTSC-H)]Cl (1 + H)Cl, [CuCl(mPipH-dm-FTSC-H)]Cl (2 + H)Cl, [CuCl(Morph-FTSC-H)] (3), [CuCl(Morph-dm-FTSC-H)] (4), [CuCl(mPyrr-FTSC-H)(H2O)] (5) and [CuCl(mPyrr-dm-FTSC-H)(H2O)] (6). The substances were characterized by elemental analysis, one- and two-dimensional NMR spectroscopy (HL1–HL6), ESI mass spectrometry, IR and UV–vis spectroscopy and single crystal X-ray diffraction (1–5). All compounds were prepared in an effort to generate potential antitumor agents with an improved therapeutic index.

View Article and Find Full Text PDF

The state of venous and arterial cerebral hemodynamics was studied using ultrasonic dopplerography with application of hypo- and hypercapnia, angioencephaloscintigraphy with pertecnetate Tc-99m in 48 patients with syndrome of vertebrobasilar insufficiency. Estimation was performed in patients by the results of neurological and otoneurologic evidence, the data of nistagmography and registration of the truncal evoked potentials. It was found that at early stages of the development of vertebrobasilar insufficiency's syndrome disorders of vasomotor reactivity and disturbances in venous hemodynamics play a leading role in its pathogenesis.

View Article and Find Full Text PDF