To achieve accurate detection of AFB1 toxin content in agricultural products and avoid false-positive rates in the assays, the specificity of mAbs is critical. We improved the specificity of the prepared monoclonal antibodies by modifying the traditional limiting dilution subcloning method. The traditional finite dilution method was modified with three-stage screening (the trending concentration of standards used in the screening is low-high-low) to achieve high specificity in pre-cell screening and increased the number of subclones to 10 to achieve the de-homologation of antibodies.
View Article and Find Full Text PDFDue to the diversification and complexity of organophosphorus pesticide residues brings great challenges to the detection work. Therefore, we developed a dual-ratiometric electrochemical aptasensor that could detect malathion (MAL) and profenofos (PRO) simultaneously. In this study, metal ions, hairpin-tetrahedral DNA nanostructures (HP-TDN) and nanocomposites were used as signal tracers, sensing framework and signal amplification strategy respectively to develop the aptasensor.
View Article and Find Full Text PDFFumonisin B1 (FB1) is a serious threat to the health of humans and animals. Herein, a lateral flow immunoassay based on universal detection probes (goat anti-mouse IgG@Eu) that could combine with any mouse monoclonal antibody was applied to detect FB1 in corn and feed. Compared with that based on direct monoclonal antibody labeling, this assay maintained bioactivity and saved consumption of monoclonal antibodies with the indirect signal amplification effect.
View Article and Find Full Text PDF