Publications by authors named "Chuanyu Zhuang"

Acute lung injury (ALI) is a devastating inflammatory disease. In lungs with inflammation, microRNA155 (miR155) induces inflammatory cytokines by inhibiting the expression of suppressor of cytokine signaling-1 (SOCS1). In addition, glycyrrhizic acid (GA) has been suggested as an anti-inflammatory drug for ALI, since it is an efficient inhibitor of nuclear factor-κB.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a devastating inflammatory disease. MicroRNA155 (miR155) in alveolar macrophages and lung epithelial cells enhances inflammatory reactions by inhibiting the suppressor of cytokine signaling 1 (SOCS1) in ALI. Anti-miR155 oligonucleotide (AMO155) have been suggested as a potential therapeutic reagent for ALI.

View Article and Find Full Text PDF

Acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS) is a devastating inflammatory lung disease with a high mortality rate. ALI/ARDS is induced by various causes, including sepsis, infections, thoracic trauma, and inhalation of toxic reagents. Corona virus infection disease-19 (COVID-19) is also a major cause of ALI/ARDS.

View Article and Find Full Text PDF

Gene therapy has been suggested as a new treatment for acute lung injury (ALI), which is a severe inflammatory disease. Previously, amphiphilic polymeric carriers such as dexamethasone-conjugated polyethylenimine (PEI) (DP) have been used to transport plasmid DNA (pDNA) into the lungs. In the current study, hybrid nanoparticles comprising DP and cell membrane (CM) from LA-4 lung epithelial cells were developed for enhanced delivery of pDNA into the lungs.

View Article and Find Full Text PDF

Acute lung injury (ALI) is an inflammatory disease of the lungs. Curcumin (Cur) shows protective effects in ALI animal models. However, Cur is a hydrophobic drug and its administration into the lungs is inefficient due to its low bioavailability.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterised by irreversible fibrosis and destruction of the alveolar structure. Receptor for advanced glycation end products (RAGE) has been identified as one of the key molecules involved in IPF pathogenesis. A RAGE-antagonist peptide (RAP) was developed based on the RAGE-binding domain of high mobility group box-1 (HMGB-1).

View Article and Find Full Text PDF

Acute lung injury (ALI) is an inflammatory lung disease. miRNA-92a (miR92a) is induced in the lungs of ALI patients and mediates inflammatory reactions. In this study, a RP1-linked R3V6 (RP1R3V6) peptide was synthesized and evaluated as a carrier of anti-microRNA-92a oligonucleotide (AMO92a) into the lungs of an ALI animal model.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe inflammatory lung disease. A high mobility group box-1 (HMGB-1) derived RAGE-antagonist peptide (RAP) was previously developed for anti-inflammatory therapy for ALI. Due to its specific binding to RAGE on the surface of inflammatory cells, the RAP may facilitate polymer-mediated intracellular delivery of plasmid DNA (pDNA) into the inflammatory cells.

View Article and Find Full Text PDF