Publications by authors named "Chuanying Xuan"

Sensorineural hearing loss (SNHL) has been demonstrated in many clinical reports as a risk factor that promotes the development of cognitive impairment. However, the underlying neurological mechanisms are not clear. Noise exposure is one of the most common causes of SNHL.

View Article and Find Full Text PDF

Epidemiological studies have revealed that noise exposure was associated with an increased risk of type 2 diabetes mellitus (T2DM). However, the exact nature of that association remains to be elucidated. The present study is designed to examine the effects of chronic noise exposure on the development of T2DM in combination with a high-fat-diet (HFD) in mice.

View Article and Find Full Text PDF

Background: Epidemiological studies have suggested that noise exposure may increase the risk of type 2 diabetes mellitus (T2DM), and experimental studies have demonstrated that noise exposure can induce insulin resistance in rodents. The aim of the present study was to explore noise-induced processes underlying impaired insulin sensitivity in mice.

Methods: Male ICR mice were randomly divided into four groups: a control group without noise exposure and three noise groups exposed to white noise at a 95-dB sound pressure level for 4 h/day for 1, 10, or 20 days (N1D, N10D, and N20D, respectively).

View Article and Find Full Text PDF

Cochlear supporting cells (SCs) have been shown to be a promising resource for hair cell (HC) regeneration in the neonatal mouse cochlea. Previous studies have reported that Lgr5+ SCs can regenerate HCs both and and thus are considered to be inner ear progenitor cells. Lgr5+ progenitors are able to regenerate more HCs than Lgr5- SCs, and it is important to understand the mechanism behind the proliferation and HC regeneration of these progenitors.

View Article and Find Full Text PDF