Very high-average optical enhancement cavities (OECs) are being used both in fundamental and applied research. The most demanding applications require stable megawatt level average power of infrared picosecond pulses with repetition rates of several tens of MHz. Toward reaching this goal, we report on the achievement of 710 kW of stable average power in a two-mirror hemispherical optical enhancement cavity.
View Article and Find Full Text PDFThe design of the Marx circuit based on avalanche transistors (ATs) is one of the effective techniques for developing solid-state pulse sources to generate nanosecond pulses. However, the influence of the avalanche transistor as a switching device on the output pulse characteristics is still unclear. In this study, investigating the switching mechanism of the AT with a mixed-mode simulation of the semiconductor device has been accomplished.
View Article and Find Full Text PDFPurpose: In recent years, the FLASH effect, in which ultrahigh dose rate (UHDR) radiotherapy (RT) can significantly reduce toxicity to normal tissue while maintaining antitumor efficacy, has been verified in many studies and even applied in human clinical cases. This work evaluates whether a room-temperature radio-frequency (RF) linear accelerator (linac) system can produce UHDR high-energy X-rays exceeding a dose rate of 40 Gy/s at a clinical source-surface distance (SSD), exploring the possibility of a compact and economical clinical FLASH RT machine suitable for most hospital treatmentrooms.
Methods: A 1.
The use of particle accelerators as photon sources has enabled advances in science and technology. Currently the workhorses of such sources are storage-ring-based synchrotron radiation facilities and linear-accelerator-based free-electron lasers. Synchrotron radiation facilities deliver photons with high repetition rates but relatively low power, owing to their temporally incoherent nature.
View Article and Find Full Text PDFThe high accuracy, low drift low-level radio frequency (LLRF) system is essential for the long-term stability of the accelerator RF and the acquirement of low emittance, high intensity electron beams. A time-multiplexing pick-up/reference signal based LLRF system is proposed to deal with the component temperature related phase drift and has been deployed and applied at the Xi'an Gamma-ray Light Source (XGLS) injector. The long term dual-receiver out-of-loop stability experiments with a continuous wave laser based phase reference distribution system (PRDS) show that the LLRF system can achieve ∼40 fs Root-Mean-Square (rms) phase accuracy and 51 fs/52 fs peak-peak drift (in 7 days/17 h with the high power RF system, respectively) while the reference phase varies both ∼30 ps.
View Article and Find Full Text PDFAn observation of prior-damage behavior inside a high-finesse optical resonator is reported. Intra-cavity average power drops appeared with magnitude and time scale depending on the power level. Increasing further the incident laser beam power led to irreversible damage of the cavity coupling mirror surface.
View Article and Find Full Text PDFA Thomson scattering X-ray source can provide quasi-monochromatic, continuously energy-tunable, polarization-controllable and high-brightness X-rays, which makes it an excellent tool for X-ray fluorescence computed tomography (XFCT). In this paper, we examined the suppression of Compton scattering background in XFCT using the linearly polarized X-rays and the implementation feasibility of linearly polarized XFCT based on this type of light source, concerning the influence of phantom attenuation and the sampling strategy, its advantage over K-edge subtraction computed tomography (CT), the imaging time, and the potential pulse pile-up effect by Monte Carlo simulations. A fan beam and pinhole collimator geometry were adopted in the simulation and the phantom was a polymethyl methacrylate cylinder inside which were gadolinium (Gd)-loaded water solutions with Gd concentrations ranging from 0.
View Article and Find Full Text PDFIn this paper, we use the theory of quantum optics and electrodynamics to study the electromagnetic field problem in the nervous system based on the assumption of an ordered arrangement of water molecules on the neuronal surface. Using the Lagrangian of the water molecule-field ion, the dynamic equations for neural signal generation and transmission are derived. Perturbation theory and the numerical method are used to solve the dynamic equations, and the characteristics of high-frequency signals (the dispersion relation, the time domain of the field, the frequency domain waveform, etc.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
December 2019
Linearly polarized Gaussian beams, under the slowly varying envelope approximation, tightly focused by a perfect parabola modeled with the integral formalism of Ignatovsky are found to be well approximated with a generalized Lax series expansion beyond the paraxial approximation. This allows obtaining simple analytic formulas of the electromagnetic field in both the direct and momentum spaces. It significantly reduces computing time, especially when dealing with the problem of simulating direct laser acceleration.
View Article and Find Full Text PDFThe Low Level radio frequency system long-term stability is critical for the operation of accelerator facilities. The RF cavity field phase drift observed at the Tsinghua Thomson scattering X-ray source showed the correlations with devices temperature characteristic. We proposed a drift compensation technique by time-multiplexing cavity pick-up and phase reference signals, which guaranteed that they shared the same route with the same change.
View Article and Find Full Text PDFMode instability with different mode excitation has been investigated by off-splicing the fusion point in a 4 kW-level monolithic fiber laser system, which reveals that the fiber systems exciting more high order mode content exhibits lower beam quality but higher mode instability threshold. The static-to-dynamic mode degradation and dynamic-only mode degradation have also been observed in the same high power fiber amplifier by varying the mode excitation, which implicates that the mode excitation plays an important role in mode characteristics in high power fiber lasers. By employing a seed with near fundamental mode beam quality, only dynamic mode degradation-mode instability sets in with negligible static beam quality degradation.
View Article and Find Full Text PDFUnlike large-scale and expensive synchrotron radiation facilities, the Thomson scattering X-ray source can provide quasi-monochromatic, energy-tunable and high-brightness X-ray pulses with a small footprint and moderate cost, making it an excellent candidate for dual-energy and multi-energy imaging at laboratories and hospitals. Here, the first feasibility study on dual-energy computed tomography (CT) based on this type of light source is reported, and the effective atomic number and electron-density distribution of a standard phantom consisting of polytetrafluoroethylene, water and aluminium is derived. The experiment was carried out at the Tsinghua Thomson scattering X-ray source with peak energies of 29 keV and 68 keV.
View Article and Find Full Text PDFIn recent experiments at Tsinghua University Accelerator Laboratory, the 31 MeV electron beam, which has been compressed to subpicosecond pulse durations, has been used to generate high peak power, narrow band Terahertz (THz) radiation by transit through different slow wave structures, specifically quartz capillaries metallized on the outside. Despite the high peak powers that have been produced, the THz pulse energy is negligible compared to the energy of the electron beam. Therefore, the THz generation process can be complementary to other beamline applications like plasma wakefield acceleration studies and Compton x-ray free electron lasers.
View Article and Find Full Text PDFkW-level 1030 nm polarization-maintained fiber laser with narrow linewidth and near-diffraction-limited beam quality is demonstrated. Theoretical simulations based on the power balance equation are first performed to optimize the system parameters of the 1030 nm ytterbium-doped fiber laser for the maximum suppression of amplified spontaneous emission (ASE). With the optimized parameters, both the copumped and counterpumped MOPA lasers are implemented to obtain an output power of >1 kW.
View Article and Find Full Text PDFBackground: Cattle are commonly infected with the microsporidian parasite Enterocytozoon bieneusi. Sequence characterization of E. bieneusi in these animals at the ribosomal internal transcribed spacer (ITS) locus had identified I, J and BEB4 as the dominant genotypes.
View Article and Find Full Text PDFThe form factor, representing the statistical characteristics of a bunch's longitudinal distribution, is one of the most essential properties of a pre-bunched electron beam and is used for many types of frontier accelerator applications. We demonstrated the measurement of a pre-bunched beam's longitudinal form factor component based on coherent radiation from a widely tunable-gap undulator. The radiation energy from bunches with different longitudinal properties was measured as a function of undulator gap.
View Article and Find Full Text PDFThe precise timing and synchronization system is an essential part for the ultra-fast electron and X-ray sources based on the photocathode injector where strict synchronization among RF, laser, and beams are required. In this paper, we present an integrated sub-100 femtosecond timing and synchronization system developed and demonstrated recently in Tsinghua University based on the collaboration with Lawrence Berkeley National Lab. The timing and synchronization system includes the fiber-based CW carrier phase reference distribution system for delivering stabilized RF phase reference to multiple receiver clients, the Low Level RF (LLRF) control system to monitor and generate the phase and amplitude controllable pulse RF signal, and the laser-RF synchronization system for high precision synchronization between optical and RF signals.
View Article and Find Full Text PDFIn pre-weaned dairy calves, the zoonotic and pathogenic species Cryptosporidium parvum is the dominant Cryptosporidium species in most industrialized nations. In several studies in China, however, C. bovis has been the dominant one.
View Article and Find Full Text PDFAs Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread.
View Article and Find Full Text PDFHigh-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radio-frequency gun or by tuning the compression of a downstream magnetic chicane.
View Article and Find Full Text PDFThomson scattering x-ray sources can produce ultrashort, energy tunable x-ray pulses characterized by high brightness, quasi-monochromatic, and high spatial coherence, which make it an ideal source for in-line phase-contrast imaging. We demonstrate the capacity of in-line phase-contrast imaging based on Tsinghua Thomson scattering X-ray source. Clear edge enhancement effect has been observed in the experiment.
View Article and Find Full Text PDFTsinghua Thomson Scattering X-ray Source (TTX) is the first-of-its-kind dedicated hard X-ray source in China based on the Thomson scattering between a terawatt ultrashort laser and relativistic electron beams. In this paper, we report the experimental generation and characterization of the first hard X-ray pulses (51.7 keV) via head-on collision of an 800 nm laser and 46.
View Article and Find Full Text PDFA novel approach to generating coherent x rays with 10(9)-10(10) photons and femtoseconds duration per laser pulse is proposed. This high intensity x-ray source is realized first by the pulse front tilt of a lateral fed laser to extend the electron-laser synchronic interaction time by several orders, which accomplishes the high-gain free-electron-laser-type exponential growth process and coherent emission with highly microbunched electron beam. Second, two methods are presented to enhance the effective optical undulator strength parameter.
View Article and Find Full Text PDF