Metastable phases such as supersaturated solid solutions, supercooling, and amorphous phases are well-known in metallurgy. They are often composed in non-equilibrium states and can be transformed into a stable phase by overcoming an energy barrier with driving forces. Particularly, it has been widely used for material strengthening and heterogeneous nucleation of precipitates in solids is mainly induced by heat treatments for supersaturated solid solutions.
View Article and Find Full Text PDFThis paper introduced an approach of die-attach bonding technology based on a low-cost high-purity aluminum (99.99%) sheet in a silicon carbide (SiC)/direct bonded aluminum (DBA) power module. Both sides of an Al sheet were sputtered by a thin Ti and Ag layer, which generated a tensile stress of 166 MPa on the Al surface.
View Article and Find Full Text PDFThis study introduced the SiC micro-heater chip as a novel thermal evaluation device for next-generation power modules and to evaluate the heat resistant performance of direct bonded copper (DBC) substrate with aluminum nitride (AlN-DBC), aluminum oxide (DBC-AlO) and silicon nitride (SiN-DBC) ceramics middle layer. The SiC micro-heater chips were structurally sound bonded on the two types of DBC substrates by Ag sinter paste and Au wire was used to interconnect the SiC and DBC substrate. The SiC micro-heater chip power modules were fixed on a water-cooling plate by a thermal interface material (TIM), a steady-state thermal resistance measurement and a power cycling test were successfully conducted.
View Article and Find Full Text PDFIn this paper, transparent electrodes with dense Cu@Ag alloy nanowires embedded in the stretchable substrates are successfully fabricated by a high-intensity pulsed light (HIPL) technique within one step. The intense light energy not only induces rapid mutual dissolution between the Cu core and the Ag shell to form dense Cu@Ag alloy nanowires but also embeds the newly formed alloy nanowires into the stretchable substrates. The combination of alloy nanowires and embedded structures greatly improve the thermal stability of the transparent electrodes that maintain a high conductivity unchanged in both high temperature (140 °C) and high humidity (85 °C, 85% RH) for at least 500 h, which is much better than previous reports.
View Article and Find Full Text PDFThe thermal cycling life of direct bonded aluminum (DBA) and active metal brazing (AMB) substrates with two types of plating-Ni electroplating and Ni⁻P electroless plating-was evaluated by thermal shock tests between -50 and 250 °C. AMB substrates with Al₂O₃ and AlN fractured only after 10 cycles, but with Si₃N₄ ceramic, they retained good thermal stability even beyond 1000 cycles, regardless of the metallization type. The Ni layer on the surviving AMB substrates with Si₃N₄ was not damaged, while a crack occurred in the Ni⁻P layer.
View Article and Find Full Text PDFPrintable and flexible Cu-Ag alloy electrodes with high conductivity and ultrahigh oxidation resistance have been successfully fabricated by using a newly developed Cu-Ag hybrid ink and a simple fabrication process consisting of low-temperature precuring followed by rapid photonic sintering (LTRS). A special Ag nanoparticle shell on a Cu core structure is first created in situ by low-temperature precuring. An instantaneous photonic sintering can induce rapid mutual dissolution between the Cu core and the Ag nanoparticle shell so that core-shell structures consisting of a Cu-rich phase in the core and a Ag-rich phase in the shell (Cu-Ag alloy) can be obtained on flexible substrates.
View Article and Find Full Text PDF