Publications by authors named "Chuanshan Zhao"

In this paper, we prepared a new type of iron and nitrogen co-doped porous carbon material (WSC-Fe/N) using a carbonization-activation process with wheat straw as a precursor and FeCl and NHCl as co-doping agents and analyzed the electrochemical properties of the resulting electrode material. Through precise control of the doping elements and carbonization temperature (900 °C), the resulting WSC-Fe/N-900 material exhibits abundant micropores, uniform mesopores, a significant specific surface area (2576.6 m g), an optimal level of iron doping (1.

View Article and Find Full Text PDF

The rational design of porous carbon materials and hydrogel electrolytes with excellent mechanical properties and low-temperature tolerance are significance for the development of flexible solid-state supercapacitors. In this study, we introduce a novel methodology for synthesizing SiC/N, S-doped porous carbon nanosheets from bamboo pulp red liquor (RL). We leverage the SiO and the sodium salt in RL as templates and sodium lignosulfonate as sulfur dopants for the pyrolysis process and use NHCl as a nitrogen dopant.

View Article and Find Full Text PDF

This paper proposes a different strategy for deriving carbon materials from biomass, abandoning traditional strong corrosive activators and using a top-down approach with a mild green enzyme targeted to degrade the pectin matrix in the inner layer of pomelo peel cotton wool, inducing a large number of nanopores on its surface. Meanwhile, the additional hydrophilic groups produced via an enzymatic treatment can be used to effectively anchor the metallic iron atoms and prepare porous carbon with uniformly dispersed Fe-N structures, in this case optimizing sample PPE-FeNPC-900's specific surface area by up to 1435 m g. PPE-FeNPC-900 is used as the electrode material in a 6 M KOH electrolyte; it manifests a decent specific capacitance of 400 F g.

View Article and Find Full Text PDF

Carbon fibers (CFs) cannot be directly used for the preparation of CF paper because of their chemically inert nature. Herein, the surface of CFs was modified using the spontaneous oxidative self-polymerization of dopamine. By taking full advantage of the spontaneous oxidation and self-polymerization properties of PD to maintain the maximum strength of CFs, a polydopamine-modified CF paper (PDA-CFP) with excellent performance was prepared using PD-modified CFs (PDA-CFs).

View Article and Find Full Text PDF

Lithium-sulfur batteries (LSBs) have attracted extensive attention due to their high energy density and low cost. The separator is a key component of LSBs. An excellent LSBs separator requires not only good electrolyte wettability, but also high thermal stability, good tensile mechanical properties, green environmental protection potential and enough inhibition of shuttle effect.

View Article and Find Full Text PDF

The freshness and safety of fruits and vegetables affect our daily life. Paper products are often used in the packaging and transportation of fruits and vegetables, and these can provide other functions besides packaging after certain modifications and additions. In this study, the AgNPs/1-MCP antibacterial fresh-keeping composite paper was prepared by in-situ loaded silver nanoparticles and spraying 1-MCP solution.

View Article and Find Full Text PDF

This work explored the fluorescence properties of nano/cellulose isolated from bleached softwood kraft pulp by TEMPO oxidation. Fluorescence spectra showed that all samples exhibited a typical emission peak at 574 nm due to the probabilistic formation of unsaturated bonds by glycosidic bonds independent of lignin. Increasing the excitation wavelengths (510-530 nm) caused red shift of fluorescence emission peaks (570-585 nm) with unchanged fluorescence intensity.

View Article and Find Full Text PDF

The intrinsic properties of paper, such as its light weight, flexibility, foldability, portability and degradability, have led to increasing interest in fabricating flexible energy storage devices and power supply devices on paper-based substrates. Hereby, a robust honeycomb-like thermoelectric generator (TEG) inspired by the origami and kirigami techniques was established in the present study. A thermoelectric ink with the properties of high electrical conductivity and low thermal conductivity was formulated by Bi2Te3 and bacterial cellulose (BC).

View Article and Find Full Text PDF

Paper-based substrates have been increasingly attractive in flexible electronics technology as flexible support substrates due to their advantages of availability, environmental friendliness (as disposable, degradable, and renewable materials), and foldability. Hereby, a facile method for installation of p-type and n-type semiconductor legs in the thickness direction of a paper substrate was established. A transparent paper-based thermoelectric generator prototype by impregnating the paper with resin was then fabricated.

View Article and Find Full Text PDF