MicroRNAs (miRNAs) play a vital role in regulating gene expression and various biological processes. As a result, they have been identified as effective targets for small molecule (SM) drugs in disease treatment. Heterogeneous graph inference stands as a classical approach for predicting SM-miRNA associations, showcasing commendable convergence accuracy and speed.
View Article and Find Full Text PDFDysregulation of microRNAs (miRNAs) is closely associated with refractory human diseases, and the identification of potential associations between small molecule (SM) drugs and miRNAs can provide valuable insights for clinical treatment. Existing computational techniques for inferring potential associations suffer from limitations in terms of accuracy and efficiency. To address these challenges, we devise a novel predictive model called RPCA$\Gamma $NR, in which we propose a new Robust principal component analysis (PCA) framework based on $\gamma $-norm and $l_{2,1}$-norm regularization and design an Augmented Lagrange Multiplier method to optimize it, thereby deriving the association scores.
View Article and Find Full Text PDFMicroRNAs (miRNAs) have significant implications in diverse human diseases and have proven to be effectively targeted by small molecules (SMs) for therapeutic interventions. However, current SM-miRNA association prediction models do not adequately capture SM/miRNA similarity. Matrix completion is an effective method for association prediction, but existing models use nuclear norm instead of rank function, which has some drawbacks.
View Article and Find Full Text PDFExploring potential associations between small molecule drugs (SMs) and microRNAs (miRNAs) is significant for drug development and disease treatment. Since biological experiments are expensive and time-consuming, we propose a computational model based on accurate matrix completion for predicting potential SM-miRNA associations (AMCSMMA). Initially, a heterogeneous SM-miRNA network is constructed, and its adjacency matrix is taken as the target matrix.
View Article and Find Full Text PDFThe accurate prediction of drug-target binding affinity (DTA) is an essential step in drug discovery and drug repositioning. Although deep learning methods have been widely adopted for DTA prediction, the complexity of extracting drug and target protein features hampers the accuracy of these predictions. In this study, we propose a novel model for DTA prediction named MSGNN-DTA, which leverages a fused multi-scale topological feature approach based on graph neural networks (GNNs).
View Article and Find Full Text PDFMicroRNA (miRNA)-disease association (MDA) prediction is critical for disease prevention, diagnosis, and treatment. Traditional MDA wet experiments, on the other hand, are inefficient and costly.Therefore, we proposed a multi-layer collaborative unsupervised training base model called SGAEMDA (Stacked Graph Autoencoder-Based Prediction of Potential miRNA-Disease Associations).
View Article and Find Full Text PDF