Publications by authors named "Chuanlong Lin"

Photon emission may be continuously produced from mechanical work through self-recoverable mechanoluminescence (ML). Significant progress has been made in high-performance ML materials in the past decades, but the rate-dependent ML kinetics remains poorly understood. Here, we have conducted systematic studies on the self-recoverable ML of Mn-doped SrZnOS (SrZnOS: Mn) under rapid compression up to ~10 GPa.

View Article and Find Full Text PDF

In pursuit of high- hydride superconductors, the molecular hydrides have attracted less attention because the hydrogen quasimolecules are usually inactive for superconductivity. Here, we report on the successful synthesis of a novel bismuth hydride superconductor 2/-BiH at pressures around 170-180 GPa. Its structure comprises bismuth atoms and elongated hydrogen molecules with a H-H bond length of 0.

View Article and Find Full Text PDF
Article Synopsis
  • Rapid compression experiments using a dynamic diamond anvil cell (dDAC) enable the study of material phase transitions at varying compression rates.
  • A new time-resolved Raman spectroscopy technique was developed to monitor structural changes in materials with subsecond resolution, improving over previous methods.
  • This technique successfully tracked phase transitions in three samples, offering a valuable alternative to x-ray diffraction for studying phase transition kinetics on longer time scales.
View Article and Find Full Text PDF

The structures, strain fields, and defect distributions in solid materials underlie the mechanical and physical properties across numerous applications. Many modern microstructural microscopy tools characterize crystal grains, domains and defects required to map lattice distortions or deformation, but are limited to studies of the (near) surface. Generally speaking, such tools cannot probe the structural dynamics in a way that is representative of bulk behavior.

View Article and Find Full Text PDF

Mechanoluminescence (ML) has received widespread attention because of potential application in stress sensors and imaging. However, pursuing highly efficient ML remains a challenge due to multifactorial limitations such as pressure and loading rate. Here, we systematically investigate pressure- and rate-dependent ML in Mn and Eu co-doped ZnS in a gigapascal pressure range by using a high-pressure dynamic diamond anvil cell and microsecond time-resolved fluorescent methods and demonstrate the giant tunability in both ML efficiency and wavelength.

View Article and Find Full Text PDF

Perovskite-related materials with various dimensionalities have attracted sustained attention owing to their extraordinary electronic and optoelectronic properties, but it is still challenging in the synthesis of compounds with desired compositions and structures. Herein, a two-dimensional (2D) CsPbI perovskite has been synthesized by the conversion of CsPbI at high-pressure and high-temperature (high -) conditions, which is quenchable at ambient conditions. synchrotron X-ray diffraction shows that high-pressure monoclinic CsPbI converts into tetragonal CsPbI and cubic CsI at 8.

View Article and Find Full Text PDF

The study of nonequilibrium transition dynamics on structural transformation from the second to microsecond regime, a time scale between static and shock compression, is an emerging field of high-pressure research. There are ample opportunities to uncover novel physical phenomena within this time regime. Herein, we briefly review the development and application of a dynamic compression technique based on a diamond anvil cell (DAC) and time-resolved X-ray diffraction (TRXRD) for the study of time-, pressure-, and temperature-dependent structural dynamics.

View Article and Find Full Text PDF

High-pressure metallic β-Sn silicon (Si-II), depending on temperature, decompression rate, stress, etc., may transform to diverse metastable forms with promising semiconducting properties under decompression. However, the underlying mechanisms governing the different transformation paths are not well understood.

View Article and Find Full Text PDF

Ice amorphization, low- to high-density amorphous (LDA-HDA) transition, as well as (re)crystallization in ice, under compression have been studied extensively due to their fundamental importance in materials science and polyamorphism. However, the nature of the multiple-step "reverse" transformation from metastable high-pressure ice to the stable crystalline form under reduced pressure is not well understood. Here, we characterize the rate and temperature dependence of the structural evolution from ice VII to ice I recovered at low pressure (∼5 mTorr) using in situ time-resolved X-ray diffraction.

View Article and Find Full Text PDF

Responding to the rapidly increasing demand for efficient energy usage and increased speed and functionality of electronic and spintronic devices, multiferroic oxides have recently emerged as key materials capable of tackling this multifaceted challenge. In this paper, we describe the development of single-site manganese-based multiferroic perovskite materials with modest amounts of nonmagnetic Ti substituted at the magnetic Mn site in Sr- Ba Mn- Ti O (SBMTO). Significantly enhanced properties were achieved with ferroelectric-type structural transition temperatures boosted to ∼430K.

View Article and Find Full Text PDF

Pressure-induced formation of amorphous ices and the low-density amorphous (LDA) to high-density amorphous (HDA) transition have been believed to occur kinetically below a crossover temperature (T_{c}) above which thermodynamically driven crystalline-crystalline (e.g., ice I_{h}-to-II) transitions and crystallization of HDA and LDA are dominant.

View Article and Find Full Text PDF

Water is an extraordinary liquid, having a number of anomalous properties which become strongly enhanced in the supercooled region. Due to rapid crystallization of supercooled water, there exists a region that has been experimentally inaccessible for studying deeply supercooled bulk water. Using a rapid decompression technique integrated with in situ X-ray diffraction, we show that a high-pressure ice phase transforms to a low-density noncrystalline (LDN) form upon rapid release of pressure at temperatures of 140-165 K.

View Article and Find Full Text PDF

As a follow-up of our previous work on pressure-induced metallization of the 2H_{c}-MoS_{2} [Chi et al., Phys. Rev.

View Article and Find Full Text PDF

We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ∼1  Pa, to ice Ic at 135 K and to ice IX at 145 K.

View Article and Find Full Text PDF

A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid.

View Article and Find Full Text PDF

Under high pressure, the phase transition mechanism and mechanical property of material are supposed to be largely associated with the transformation induced elastic strain. However, the experimental evidences for such strain are scanty. The elastic and plastic properties of ZnO, a leading material for applications in chemical sensor, catalyst, and optical thin coatings, were determined using in situ high pressure synchrotron axial and radial x-ray diffraction.

View Article and Find Full Text PDF

The ability to remotely control pressure in diamond anvil cells (DACs) in accurate and consistent manner at room temperature, as well as at cryogenic and elevated temperatures, is crucial for effective and reliable operation of a high-pressure synchrotron facility such as High Pressure Collaborative Access Team (HPCAT). Over the last several years, a considerable effort has been made to develop instrumentation for remote and automated pressure control in DACs during synchrotron experiments. We have designed and implemented an array of modular pneumatic (double-diaphragm), mechanical (gearboxes), and piezoelectric devices and their combinations for controlling pressure and compression/decompression rate at various temperature conditions from 4 K in cryostats to several thousand Kelvin in laser-heated DACs.

View Article and Find Full Text PDF

Complementary advances in high pressure research apparatus and techniques make it possible to carry out time-resolved high pressure research using what would customarily be considered static high pressure apparatus. This work specifically explores time-resolved high pressure x-ray diffraction with rapid compression and/or decompression of a sample in a diamond anvil cell. Key aspects of the synchrotron beamline and ancillary equipment are presented, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data.

View Article and Find Full Text PDF

The monochromator and focusing mirrors of the 16-BM-D beamline, which is dedicated to high-pressure research with micro-X-ray diffraction (micro-XRD) and X-ray absorption near edge structure (XANES) (6-45 keV) spectroscopy, have been recently upgraded. Monochromatic X-rays are selected by a Si (111) double-crystal monochromator operated in an artificial channel-cut mode and focused to 5 μm × 5 μm (FWHM) by table-top Kirkpatrick-Baez type mirrors located near the sample stage. The typical X-ray flux is ∼5 × 10(8) photons/s at 30 keV.

View Article and Find Full Text PDF

The structural phase transition of gadolinium-scandium-gallium garnet (Gd(3)Sc(2)Ga(3)O(12), GSGG) has been studied at high pressure and high temperature using the synchrotron X-ray diffraction technique in a laser-heated diamond anvil cell. The GSGG garnet transformed to an orthorhombic perovskite structure at approximately 24 GPa after laser heating to 1500-2000 K. The garnet-to-perovskite phase transition is associated with an ∼8% volume reduction and an increase in the coordination number of the Ga(3+) or Sc(3+) ion.

View Article and Find Full Text PDF

Structural stability of the perovskite-type GdMnO(3) has been investigated by the synchrotron angle-dispersive x-ray diffraction technique up to 63 GPa in a diamond anvil cell. GdMnO(3) stays in an orthorhombic structure but undergoes an isostructural phase transition with ~5% volume reduction at 50 GPa. In the parent orthorhombic phase, the compressions along a, b and c axes exhibit a large anisotropic behavior.

View Article and Find Full Text PDF