Finding highly efficient hydrogen evolution reaction (HER) catalysts is pertinent to the ultimate goal of transformation into a net-zero carbon emission society. The design principles for such HER catalysts lie in the well-known structure-property relationship, which guides the synthesis procedure that creates catalyst with target properties such as catalytic activity. Here we report a general strategy to synthesize 10 kinds of single-atom-doped CoSe-DETA (DETA = diethylenetriamine) nanobelts.
View Article and Find Full Text PDFCore-shell bimetallic nanocatalysts have attracted long-standing attention in heterogeneous catalysis. Tailoring both the core size and shell thickness to the dedicated geometrical and electronic properties for high catalytic reactivity is important but challenging. Here, taking Au@Pd core-shell catalysts as an example, we disclose by theory that a large size of Au core with a two monolayer of Pd shell is vital to eliminate undesired lattice contractions and ligand destabilizations for optimum benzyl alcohol adsorption.
View Article and Find Full Text PDFControlling the chemical environments of the active metal atom including both coordination number (CN) and local composition (LC) is vital to achieve active and stable single-atom catalysts (SACs), but remains challenging. Here we synthesized a series of supported Pt SACs by depositing Pt atoms onto the pretuned anchoring sites on nitrogen-doped carbon using atomic layer deposition. In hydrogenation of -chloronitrobenzene, the Pt SAC with a higher CN about four but less pyridinic nitrogen (N) content exhibits a remarkably high activity along with superior recyclability compared to those with lower CNs and more N.
View Article and Find Full Text PDFFlowering is an important developmental process from vegetative to reproductive growth in plant; thus, it is necessary to analyze the genes involved in the regulation of flowering time. The MADS-box transcription factor family exists widely in plants and plays an important role in the regulation of flowering time. However, the molecular mechanism of involved in the regulation of plant flowering is not very clear.
View Article and Find Full Text PDFUsing in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations, we conclusively demonstrate that acetaldehyde (AcH) undergoes aldol condensation when flown over ceria octahedral nanoparticles, and the reaction is desorption-limited at ambient temperature. -Crotonaldehyde (CrH) is the predominant product whose coverage builds up on the catalyst with time on stream. The proposed mechanism on CeO(111) proceeds via AcH enolization (i.
View Article and Find Full Text PDFSupported single transition metal (TM ) catalysts have attracted broad attention in academia recently. Still, their corresponding reactivity and stability under reaction conditions are critical but have not well explored at the fundamental level. Herein, we use density functional theory calculation and ab initio molecular dynamics simulation to investigate the role of reactants and ligands on the reactivity and stability of graphitic carbon nitride (g-C N ) supported Ni for CO oxidation.
View Article and Find Full Text PDF