Chirality evolution is ubiquitous and important in nature, but achieving it in artificial systems is still challenging. Herein, the chirality evolution of supramolecular helices based on l-phenylalanine derivative (LPF) and naphthylamide derivate (NDIAPY) is achieved by the strategy of electron transfer (ET) assisted secondary nucleation. ET from LPF to NDIAPY can be triggered by 5 s UV irradiation on left-handed LPF-NDIAPY co-assemblies, leading to NDIAPY radical anions and partial disassembly of the helices.
View Article and Find Full Text PDFDespite the great progress of various multifunctional wound dressings, it is challenging to simultaneously achieve complete healing and functional remodeling for diabetic foot ulcers and refractory chronic wounds. Aiming to comprehensively regulate chronic inflammation, angiogenesis, and metabolism processes, herein, a novel kind of dynamic hyaluronic acid (HA) hydrogel was designed by combining boronate and coordination chemistry. Besides having injectability, self-healing, and detachment properties, dynamic HA hydrogels presented diabetic wound-responsive degradation and controllable HS release.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
The synergetic evolution of multiple chiral structures stemmed from same building units is ubiquitous in nature and vital to living systems, but achieving it in artificial systems remains a challenge. Herein, we report a methanol-water mediated dual assembly pathway strategy for simultaneous construction of P and M helices in one-component chiral system. The conformation of l-phenylaniline derivates (LBpyF) is controlled to folded state in CHOH due to the hydrogen bonds as well as C-H⋅⋅⋅π interaction between LBpyF and CHOH.
View Article and Find Full Text PDFChronic diabetic wounds seriously threaten the health and life of human beings, however, it is challenging to develop pluripotent dressings that comprehensively remodel inflammation microenvironment, neovascularization and reepithelization to achieve high performance healing in diabetic wounds. Herein we construct a bioinspired polysaccharide coordinated hydrogel composed of bisphosphate-modified β-glucan (BG) with bioactive metal ions of Zn and Mg, in which multiple chelation enables fast gelation, self-healing, and dynamically sealing wounds. In vitro Mg release from BGM or BGMZ could promote intracellular uptake of Zn through upregulating Zn-related transporter protein ZIP6 while intracellular Mg remained relatively stable via downregulating the Mg transporter protein of MagT1.
View Article and Find Full Text PDFThe Schwann cell (SC) is essential in peripheral nerve regeneration by reprogramming into a stem-like "repair Schwann cell" (rSC) phenotype; however, maintaining the rSC stemness remains an unmet challenge. Chirality is a fundamental factor controlling cell fate, and its potential role in regulation of SC reprogramming has long been ignored and remains poorly understood. Herein, inspired by natural chiral components in the SC microenvironment, chiral hydrogel nerve conduits are prepared by supramolecular assembly of l/d-phenylalanine derivatives (l/d-Phe) in polymeric chitosan-gelatin conduits.
View Article and Find Full Text PDFHow to maintain high catalytic activity and stability in the process of biocatalysis is crucial, inspiring strategies to construct an appropriate catalytic microenvironment. Considering the lipase's inherent chirality and the necessity for a delicate hydrophilic-hydrophobic equilibrium, we crafted a chiral, nonaqueous catalytic microenvironment via the coassembly of Boc-FF-NHNH (Bfl) and lipase. Benefiting from the chirality and distinct Bfl-lipase interactions, the lipase@Bfl supramolecular hybrid amplifies biological functionalities and can serve as a versatile and highly efficient catalyst.
View Article and Find Full Text PDFAmino acid-derived self-assembled nanofibers comprising supramolecular chiral hydrogels with unique physiochemical characteristics are highly demanded biomaterials for various biological applications. However, their narrow functionality often limits practical use, necessitating the development of biomaterials with multiple features within a single system. Herein, chiral co-assembled hybrid hydrogel systems termed LPH-EGCG and DPH-EGCG were constructed by co-assembling L/DPFEG gelators with epigallocatechin gallate (EGCG) followed by cross-linking with polyvinyl alcohol (PVA) and hyaluronic acid (HA).
View Article and Find Full Text PDFTumor-derived exosomes (TDEs) induced extracellular microenvironment has recently been validated to be critical for tumor progression and metastasis, however, remodeling it for oncotherapy still remains a major challenge due to difficulty in regulation of TDEs secretion. Herein, the supramolecular chiral nanofibers, composed of -phenylalanine derivates (L/D-Phe) and linear hyaluronic acid (HA), are successfully employed to construct TDEs induced anti-tumor extracellular microenvironment. The left-handed L-Phe @HA nanofibers significantly inhibit TDEs secretion into extracellular microenvironment, which results in suppression of tumor proliferation and metastasis in vitro and vivo.
View Article and Find Full Text PDFCritical-size defects (CSDs) of the craniofacial bones cause aesthetic and functional complications that seriously impact the quality of life. The transplantation of human dental pulp stem cells (hDPSCs) is a promising strategy for bone tissue engineering. Chirality is commonly observed in natural biomolecules, yet its effect on stem cell differentiation is seldom studied, and little is known about the underlying mechanism.
View Article and Find Full Text PDFAlthough chemotherapy has the potential to induce tumor immunotherapy via immunogenic cell death (ICD) effects, how to control the intensity of the immune responses still deserves further exploration. Herein, a controllable ultrasound (US)-triggered chemo-immunotherapy nanoagonist is successfully synthesized by utilizing the pH and reactive oxygen species (ROS) dual-responsive PEG-polyphenol to assemble sonosensitizer zinc oxide (ZnO) and doxorubicin (DOX). The PZnO@DOX nanoparticles have an intelligent disassembly to release DOX and zinc ions in acidic pH conditions.
View Article and Find Full Text PDFSodium aescinate (SA) shows great potential for treating lymphedema since it can regulate the expression of cytokines in M1 macrophages, however, it is commonly administered intravenously in clinical practice and often accompanied by severe toxic side effects and short metabolic cycles. Herein, SA-loaded chiral supramolecular hydrogels are prepared to prove the curative effects of SA on lymphedema and enhance its safety and transdermal transmission efficiency. In vitro studies demonstrate that SA- loaded chiral supramolecular hydrogels can modulate local immune responses by inhibiting M1 macrophage polarization.
View Article and Find Full Text PDFTo comprehend the significance of improved conductive properties in C2-symmetric hydrogels, it is vital to investigate how non-gelating achiral functional group isomers influence the conductivity of such supramolecular hydrogels, whereas understanding the major driving forces behind this regulatory process is first and foremost. Herein, we report a hydrogel system containing tryptophan-conjugated NDI as the backbone (L/D-NTrp), enabling effective supramolecular assembly with the bipyridyl functional group isomers. This co-assembly behavior results in materials with exceptional mechanical properties and high conductivities, surpassing most previously reported C2-symmetrical hydrogels, as well as the ability to form controlled morphologies.
View Article and Find Full Text PDFChirality-directed stem-cell-fate determination involves coordinated transcriptional and metabolomics programming that is only partially understood. Here, using high-throughput transcriptional-metabolic profiling and pipeline network analysis, the molecular architecture of chirality-guided mesenchymal stem cell lineage diversification is revealed. A total of 4769 genes and 250 metabolites are identified that are significantly biased by the biomimetic chiral extracellular microenvironment (ECM).
View Article and Find Full Text PDFThe regulation of inflammatory response at the site of injury and macrophage immunotherapy is critical for tissue repair. Chiral self-assemblies are one of the most ubiquitous life cues, which is closely related to biological functions, life processes, and even the pathogenesis of diseases. However, the role of supramolecular chiral self-assemblies in the regulation of immune functions in the internal environment of tissues has not been fully explored yet.
View Article and Find Full Text PDFChiral supramolecular assemblies with helical structures (e. g., proteins with α-helix, DNA with double helix, collagen with triple-helix) as the central structure motifs in biological systems play a crucial role in various physiological activities of living organisms.
View Article and Find Full Text PDFManipulating neural cell behaviors is a critical issue to various therapies for neurological diseases and damages, where matrix chirality has long been overlooked despite the proven adhesion and proliferation improvement of multiple non-neural cells by L-matrixes. Here, it is reported that the D-matrix chirality specifically enhances cell density, viability, proliferation, and survival in four different types of neural cells, contrasting its inhibition in non-neural cells. This universal impact on neural cells is defined as "chirality selection for D-matrix" and is achieved through the activation of JNK and p38/MAPK signaling pathways by the cellular tension relaxation resulting from the weak interaction between D-matrix and cytoskeleton proteins, particularly actin.
View Article and Find Full Text PDFBacterial infections and oxidative damage caused by various reactive oxygen species (ROS) pose a significant threat to human health. It is highly desirable to find an ideal biomaterial system with broad spectrum antibacterial and antioxidant capabilities. A new supramolecular antibacterial and antioxidant composite hydrogel made of chiral L-phenylalanine-derivative (LPFEG) as matrix and Mxene (Ti C T ) as filler material is presented.
View Article and Find Full Text PDFAlthough molecular piezoelectric materials are ideal constituents for next-generation electronic microdevices, their weak piezoelectric coefficients which restrict their practical applications need to be enhanced by some strategies. Herein, a series of d-phenylalanine derivatives are synthesized and an increased molecular piezoelectric coefficient of their assemblies is achieved by acid doping. The acid doping can increase the asymmetric distribution of charges in the molecules and in turn molecular polarizability, leading to the enhanced molecular piezoelectricity of assemblies.
View Article and Find Full Text PDFThe induction of diverse chirality regulation in nature by multiple binding sites of biomolecules is ubiquitous and plays an essential role in determining the biofunction of biosystems. However, mimicking this biological phenomenon and understanding at a molecular level its mechanism with the multiple binding sites by establishing an artificial system still remains a challenge. Herein, abundant chirality inversion is achieved by precisely and multiply manipulating the co-assembled binding sites of phenylalanine derivatives (D/LPPF) with different naphthalene derivatives (NA, NC, NP, NF).
View Article and Find Full Text PDFRevascularization plays a critical role in the healing of diabetic wounds. Accumulation of advanced glycation end products (AGEs) and refractory multidrug resistant bacterial infection are the two major barriers to revascularization, directly leading to impaired healing of diabetic wounds. Here, an artfully designed chiral gel dressing is fabricated (named as HA-LM2-RMR), which consists of l-phenylalanine and cationic hexapeptide coassembled helical nanofibers cross-linked with hyaluronic acid via hydrogen bonding.
View Article and Find Full Text PDFBecause any perturbation in the number of oxidation sites associated with the polymeric backbone can cause changes in the electrical properties, the stability of electrical properties has strongly prevented the wide adoption of most conducting polymers for commercialization, e.g., polyanilines (PANI).
View Article and Find Full Text PDFBeing able to precisely manipulate both the morphology and chiroptical signals of supramolecular assemblies will help to better understand the natural biological self-assembly mechanism. Two simple l/d-phenylalanine-based derivatives (L/DPFM) have been designed, and their solvent-dependent morphology evolutions are illustrated. It was found that, as the content of H O in aqueous ethanol solutions was increased, LPFM self-assembles first into right-handed nanofibers, then flat fibrous structures, and finally inversed left-handed nanofibers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2022
Kinetic co-assembly pathway induced chirality inversion along with morphology transition is of importance to understand biological processes, but still remains a challenge to realize in artificial systems. Herein, helical nanofibers consisting of phenylalanine-based enantiomers (L/DPF) successfully transform into kinetically trapped architectures with opposite helicity through a kinetic co-assembly pathway. By contrast, the co-assemblies obtained by a thermodynamic pathway exhibit non-helical structures.
View Article and Find Full Text PDFCancer recurrence remains a major challenge after primary tumor excision, and the inflammation of tumor-caused wounds can hinder wound healing and potentially promote tumor growth. Herein, a chiral L-phenylalanine-based (LPFEG) supramolecular hydrogel system encapsulated with polydopamine nanoparticles (PDA-NPs) has been developed in order to prevent tumor relapse after surgery and promote wound repair. PDA-NPs allow for near-infrared (NIR) light-triggered photothermal therapy, especially, it can scavenge free radicals in the surgical wound.
View Article and Find Full Text PDF