The competing and non-equilibrium phase transitions, involving dynamic tunability of cooperative electronic and magnetic states in strongly correlated materials, show great promise in quantum sensing and information technology. To date, the stabilization of transient states is still in the preliminary stage, particularly with respect to molecular electronic solids. Here, a dynamic and cooperative phase in potassium-7,7,8,8-tetracyanoquinodimethane (K-TCNQ) with the control of pulsed electromagnetic excitation is demonstrated.
View Article and Find Full Text PDFDissipationless currents from topologically protected states are promising for disorder-tolerant electronics and quantum computation. Here, we photogenerate giant anisotropic terahertz nonlinear currents with vanishing scattering, driven by laser-induced coherent phonons of broken inversion symmetry in a centrosymmetric Dirac material ZrTe. Our work suggests that this phononic terahertz symmetry switching leads to formation of Weyl points, whose chirality manifests in a transverse, helicity-dependent current, orthogonal to the dynamical inversion symmetry breaking axis, via circular photogalvanic effect.
View Article and Find Full Text PDFWe calculate the efficiency at the unified trade-off optimization criterion (the so-called maximum Ω criterion) representing a compromise between the useful energy and the lost energy of heat engines operating between two reservoirs at different temperatures and chemical potentials, and demonstrate that the linear coefficient 3/4 and quadratic coefficient 1/32 of the efficiency at maximum Ω are universal for heat engines under strong coupling and symmetry conditions. It is further proved that the conclusions obtained here also apply to the ecological optimization criterion.
View Article and Find Full Text PDF