Introduction of C4 photosynthetic traits into C3 crops is an important strategy for improving photosynthetic capacity and productivity. Here, we report the research results of a variant line of sorghum-rice (SR) plant with big panicle and high spikelet density by introducing sorghum genome DNA into rice by spike-stalk injection. The whole-genome resequencing showed that a few sorghum genes could be integrated into the rice genome.
View Article and Find Full Text PDFThe objective of this study was to reveal the physiological and molecular mechanisms of low-nitrogen (N) tolerance in transgenic plant lines containing C phosphoenolpyruvate carboxylase (C-PEPC) gene. The transgenic rice lines only over-expressing the maize C-PEPC) (PC) and their untransformed wild type, Kitaake (WT), were used in this study. At different N levels, the dry weight, total N content, carbon and N levels, photorespiration-related enzymatic activities, gene expression levels and photorespiration-related product accumulations were measured, as were the transgenic lines' agronomic traits.
View Article and Find Full Text PDFBackground: Recent studies have shown that C4-like photosynthetic pathways partly reside in photosynthetic cells surrounding the vascular system of C3 dicots. However, it is still unclear whether this is the case in C3 monocots, especially at the molecular level.
Results: In order to fill this gap, we investigated several characteristics required for C4 photosynthesis, including C4 pathway enzymes, cyclic/non-cyclic photophosphorylation rates, the levels and assembly state of photosynthetic machineries, in the mid-veins of C3 monocots rice with leaf laminae used as controls.
Environ Sci Pollut Res Int
January 2016
The present study was conducted to examine the effects of increasing concentrations of chromium (Cr(6+)) (0, 25, 50, 100, and 200 μmol) on rice (Oryza sativa L.) morphological traits, photosynthesis performance, and the activities of antioxidative enzymes. In addition, the ultrastructure of chloroplasts in the leaves of hydroponically cultivated rice (O.
View Article and Find Full Text PDFPhotosynthetic activities and thylakoid membrane protein patterns as well as the ultrastructure of chloroplasts in flag leaves were investigated during the senescence processes in high-yield hybrid rice LYPJ under field condition. The earlier decrease of PS I activity than PS II in LYPJ was primarily due to the significant degradation of PS I chlorophyll-protein complex. The degradation rate for each chlorophyll-protein complex was different and the order for the stability of thylakoid membrane complexes during flag leaf senescence in rice LYPJ was: LHCII > OEC > PSII core antenna > PSII core > PSI core > LHCI, which was partly supported by the BN-PAGE gel combined with immunoblot analysis.
View Article and Find Full Text PDFPrevious studies have shown that exposure of Arabidopsis leaves to high light (HL) causes a systemic acquired acclimation (SAA) response in the vasculature. It has been postulated that C₄-like photosynthesis in the leaf veins triggers this response via the Mehler reaction. To investigate this proposed connection and extend SAA to other plants, we examined the redox state of NADPH, ascorbate (ASA), and glutathione (GSH) pools; levels and histochemical localization of O₂- and H₂O₂ signals; and activities of antioxidant enzymes in the midvein and leaf lamina of rice, when they were subjected to HL and low light.
View Article and Find Full Text PDFWe determined the effects of exogenous nitric oxide on photosynthesis and gene expression in transgenic rice plants (PC) over-expressing the maize C4pepc gene, which encodes phosphoenolpyruvate carboxylase (PEPC). Seedlings were subjected to treatments with NO donors, an NO scavenger, phospholipase inhibitors, a Ca(2+) chelator, a Ca(2+) channel inhibitor, and a hydrogen peroxide (H2O2) inhibitor, individually and in various combinations. The NO donors significantly increased the net photosynthetic rate (PN) of PC and wild-type (WT), especially that of PC.
View Article and Find Full Text PDF