Publications by authors named "Chuang-Ye Li"

Adhesion between calcium oxalate crystals and renal tubular epithelial cells is a vital cause of renal stone formation; however, the drugs that inhibit crystal adhesion and the mechanism of inhibition have yet to be explored. The cell injury model was constructed using nano-COM crystals, and changes in oxidative stress levels, endoplasmic reticulum (ER) stress levels, downstream p38 MAPK protein expression, apoptosis, adhesion protein osteopontin expression, and cell-crystal adhesion were examined in the presence of polysaccharide (DLP) and sulfated DLP (SDLP) under protected and unprotected conditions. Both DLP and SDLP inhibited nano-COM damage to human kidney proximal tubular epithelial cell (HK-2), increased cell viability, decreased ROS levels, reduced the opening of mitochondrial membrane permeability transition pore, markedly reduced ER Ca ion concentration and adhesion molecule OPN expression, down-regulated the expression of ER stress signature proteins including CHOP, Caspase 12, and p38 MAPK, and decreased the apoptosis rate of cells.

View Article and Find Full Text PDF

This study aims to elucidate the mechanism and potential of Rhizoma alismatis polysaccharides (RAPs) in preventing oxidative damage to human renal proximal tubule epithelial cells. The experimental approach involved incubating HK-2 cells with 100 nm calcium oxalate monohydrate for 24 h to establish a cellular injury model. Protection was provided by RAPs with varying carboxyl group contents: 3.

View Article and Find Full Text PDF

Objective: This study aimed to explore the clinical characteristics, treatment methods, and prognosis of neonatal pyocele of tunica vaginalis and to provide a reference for the clinical treatment.

Methods: A total of 56 newborns with pyocele of tunica vaginalis were admitted to our hospital due to the scrotal emergency from January 2015 to January 2020. Our study retrospectively analyzed these 56 cases.

View Article and Find Full Text PDF

Three carboxymethylated polysaccharides (PCP-C1, PCP-C2, and PCP-C3) with -COOH contents of 6.13%, 10.24%, and 16.

View Article and Find Full Text PDF

Endocytosis is a protective mechanism of renal epithelial cells to eliminate retained crystals. This research investigated the endocytosis of 100 nm calcium oxalate monohydrate crystals in human kidney proximal tubular epithelial (HK-2) cells before and after repair by four kinds of tea polysaccharides with molecular weights (MWs) of 10.88 (TPS0), 8.

View Article and Find Full Text PDF

Crystal adhesion is an important link in the formation of kidney stones. This study investigated and compared the adhesion differences between nano-calcium oxalate monohydrate (COM) and human renal proximal tubule epithelial (HK-2) cells before and after treatment with tea polysaccharides (TPSs) TPS0, TPS1, TPS2, and TPS3 with molecular weights of 10.88, 8.

View Article and Find Full Text PDF

Kidney stone formation is closely related to renal epithelial cell damage and the adhesion of calcium oxalate crystals to cells. In this research, the adhesion of human kidney proximal tubular epithelial cells (HK-2) to calcium oxalate monohydrate crystals with a size of approximately 100 nm was studied. In addition, the inhibition of crystal adhesion by four tea polysaccharides (TPS0, TPS1, TPS2, and TPS3) with the molecular weights of 10.

View Article and Find Full Text PDF