Sensors (Basel)
September 2024
The utilization of hydraulic fracturing technology is indispensable for unlocking the potential of tight oil and gas reservoirs. Understanding and accurately evaluating the impact of fracturing is pivotal in maximizing oil and gas production and optimizing wellbore performance. Currently, evaluation methods based on acoustic logging, such as orthogonal dipole anisotropy and radial tomography imaging, are widely used.
View Article and Find Full Text PDFButt welding is extensively applied in long-distance oil and gas pipelines, and it is of great significance to conduct non-destructive ultrasonic testing of girth welds in order to avoid leakage and safety accidents during pipeline production and operation. In view of the limitations of large transducer size, single fixed beam angle, low detection resolution and high cost of conventional ultrasonic inspection technologies, a 16-channel piezoelectric micro ultrasonic transducer (PMUT) array probe was developed through theoretical analysis and structural optimization design. After the probe impedance characterization, the experimental results show that the theoretical model can effectively guide the design of the ultrasonic transducer array, offering the maximum operating frequency deviation of less than 5%.
View Article and Find Full Text PDFImpact force refers to a transient phenomenon with a very short-acting time, but a large impulse. Therefore, the detection of impact vibration is critical for the reliability, stability, and overall life of mechanical parts. Accordingly, this paper proposes a method to indirectly characterize the impact force by using an impact stress wave.
View Article and Find Full Text PDFAnchored steel bars have been widely used in retrofitting of existing concrete structures. The bonding strength between the anchored steel bar and the concrete is critical to the integrity of the strengthened concrete structure. This paper presents a method to monitor epoxy-grouted bonding strength development by using a piezoceramic-enabled active sensing technique.
View Article and Find Full Text PDFConcrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs.
View Article and Find Full Text PDF