Publications by authors named "Chuang Chih-Fan"

Circular RNAs (circRNAs), a class of long noncoding RNAs, are known to be enriched in mammalian neural tissues. Although a wide range of dysregulation of gene expression in autism spectrum disorder (ASD) have been reported, the role of circRNAs in ASD remains largely unknown. Here, we performed genome-wide circRNA expression profiling in postmortem brains from individuals with ASD and controls and identified 60 circRNAs and three coregulated modules that were perturbed in ASD.

View Article and Find Full Text PDF

Local translation plays important roles in the maintenance and various functions of axons, and dysfunctions of local translation in axons are implicated in various neurological diseases. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA binding proteins with multiple functions in RNA metabolism. Here, we identified 20 hnRNPs in the axons of cultured rat cortical neurons by interrogating published axon mass spectrometric databases with rat protein databases.

View Article and Find Full Text PDF

The axon is a long projection connecting a neuron to its targets. Here, the axons of cultured rat cortical neurons were isolated with micropatterned chips that enable the separation of axons from their cell bodies. Proteins extracted from isolated axons and whole neurons were subjected to analyses using two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) analyses without and with stable isotope dimethyl labeling, resulting in the identification of >2500 axonal proteins and 103 axon-enriched proteins.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists created a special device that separates parts of brain cells called neurons so they can study them better.
  • The device has two sections that keep the neuron parts apart, allowing only the long fibers called axons to move down to the other section.
  • This helps researchers look closely at the axons without mixing them up with the other parts of neurons, which could help in understanding how they work.
View Article and Find Full Text PDF

Postsynaptic density (PSD) is a protein supramolecule lying underneath the postsynaptic membrane of excitatory synapses and has been implicated to play important roles in synaptic structure and function in mammalian central nervous system. Here, PSDs were isolated from two distinct regions of porcine brain, cerebral cortex and cerebellum. SDS-PAGE and Western blotting analyses indicated that cerebral and cerebellar PSDs consisted of a similar set of proteins with noticeable differences in the abundance of various proteins between these samples.

View Article and Find Full Text PDF