Publications by authors named "Chuang C Chiueh"

Previous studies indicate that the inducible nitric oxide synthase 2 (NOS2) of the brain vascular tissue in experimental subarachnoid hemorrhage (SAH) rats is a critical factor for inducing cerebral vasospasm. However, the underlying molecular mechanisms remain to be elucidated. Here, we applied ferrous citrate (FC) complexes to the primary cultured mouse cerebral endothelial cell (CEC) to mimic the SAH conditions and to address the issue how SAH-induced NOS2 up-regulation.

View Article and Find Full Text PDF

Premenopausal women have better survival than men after intracerebral hemorrhage, which is associated with iron overproduction and autophagy induction. To examine the participation of neuronal autophagy and estrogen receptor α (ERα) in the E 2-mediated protection, PC12 neurons treated with Atg7 (autophagy-related protein 7) siRNA, rapamycin (an autophagy inducer), or Erα siRNA were applied. To study whether autophagy involves in β-estradiol 3-benzoate (E 2)-mediated neuroprotection against iron-induced striatal injury, castration and E 2 capsule implantation were performed at 2 weeks and 24 h, respectively, before ferrous citrate (FC) infusion into the caudate nucleus (CN) of Sprague Dawley male and female rats.

View Article and Find Full Text PDF

Recent advances in molecular biology provide methods and tools for studying cell signaling pathways underlying hormetic mechanisms produced by radiation hormesis, ischemic, remote ischemic, and chemical preconditioning as well as withholding of nutrients and/or trophic factors. Most of the proposed key signaling pathways of hormetic mechanisms remain to be elucidated. For the investigation of possible role of thiol redox signaling systems in hormesis, a serum deprivation preconditioned human cell model, free radical assays, and molecular biological methods are employed for studying whether free radicals, the NO-cGMP-PKG cell signaling pathway, and the redox protein thioredoxin (Trx) play any roles in the hormetic mechanism against cytotoxicity caused by serum deprivation and also neurotoxin 1-methyl-4-phenyltetrahydropyridinium ion (MPP(+)).

View Article and Find Full Text PDF

Background And Purpose: Accumulation of iron after intracerebral hemorrhage causes free radical formation and oxidative damage resulting in liquefaction. The aim of this study was the investigation of molecular mechanisms underlying estrogen-mediated neuroprotective effect against iron-induced brain injury in vivo.

Methods: Age-matched male and female Sprague-Dawley rats were stereotaxically infused with either ferrous citrate (FC) or saline (10 muL) into the right caudate nucleus.

View Article and Find Full Text PDF
Article Synopsis
  • - Many biological fields have noticed that low doses of stress can actually help cells or organisms become more resistant to higher levels of stress, but different terms are used to describe this process, leading to confusion.
  • - The lack of communication among scientists has resulted in various terms like "adaptive response," "preconditioning," and "hormesis," which all refer to similar biological behaviors, but complicate dialogue across disciplines.
  • - This article proposes a way to unify the terminology and concepts regarding dose-response relationships to improve understanding and collaboration among diverse scientific areas.
View Article and Find Full Text PDF

Through the inhibition of monoamine oxidase type B (MAO-B), (-)-deprenyl (selegiline) prevents the conversion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) and also prevents the neurotoxicity in the dopaminergic neurons in animal models. Cumulative observations suggest that selegiline may also protect against MPP+-induced neurotoxicity, possibly through the induction of pro-survival genes. We have observed that thioredoxin (Trx) mediates the induction of mitochondrial manganese superoxide dismutase (MnSOD) and Bcl-2 during preconditioning-induced hormesis.

View Article and Find Full Text PDF

Hormesis, a stress tolerance, can be induced by ischemic preconditioning stress. In addition to preconditioning, it may be induced by other means, such as gas anesthetics. Preconditioning mechanisms, which may be mediated by reprogramming survival genes and proteins, are obscure.

View Article and Find Full Text PDF

Oxidative stress and apoptosis may play an important role in the neurodegeneration. The present paper outlines antioxidative and antiapototic mechanisms of nitric oxide and S-nitrosothiols, which could mediate neuroprotection. Nitric oxide generated by nitric oxide synthase or released from an endogenous S-nitrosothiol, S-nitrosoglutathione may up-regulate antioxidative thioredoxin system and antiapototic Bcl-2 protein through a cGMP-dependent mechanism.

View Article and Find Full Text PDF

Delayed cardio- and neuroprotection are observed following a preconditioning procedure evoked by a brief and nontoxic oxidative stress due to deprivation of oxygen, glucose, serum, trophic factors, and/or antioxidative enzymes. Preconditioning protection can be observed in vivo and is under clinical trials for preservation of cell viability following organ transplants of liver. Previous studies indicated that ischemic preconditioning increases the expression of heat-shock proteins (HSPs) and nitric oxide synthase (NOS).

View Article and Find Full Text PDF

In this study, we investigated the hypothesis that the pro-oxidative properties of Angeli's salt (AS), a nitroxyl anion (HNO/NO-) releasing compound, cause neurotoxicity in dopaminergic neurons. The pro-oxidative properties were demonstrated in vitro by measuring hydroxylation products of salicylate and peroxidation of lipids under various redox conditions. AS (0-1000 microM) released high amounts of hydroxylating species in a concentration dependent manner.

View Article and Find Full Text PDF

Clinical studies suggest that estrogen may improve cognition in Alzheimer's patients. Basic experiments demonstrate that 17beta-estradiol protects against neurodegeneration in both cell and animal models. In the present study, a human SH-SY5Y cell model was used to investigate molecular mechanisms underlying the receptor-mediated neuroprotection of physiological concentrations of 17beta-estradiol.

View Article and Find Full Text PDF

Human neuroblastoma cells, SH-SY5Y, contain relatively low levels of thioredoxin (Trx); thus, they serve favorably as a model for studying oxidative stress-induced apoptosis (Andoh, T., Chock, P. B.

View Article and Find Full Text PDF

Indirect evidence, including neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-neurotoxicity by nitric oxide synthase (NOS) inhibitors and resistance of transgenic animals deficient in NOS, is controversial. We have reviewed evidence in favor of oxidative stress during the development of MPTP-neurotoxicity and the influence of antioxidants, including nitric oxide (NO) and NO donors, on MPTP-induced dopaminergic neurotoxicity. Systemic administration of MPTP causes dose-dependent generation of hydroxyl radicals (OH) in vivo in the striatum in mice; OH scavengers protect dopaminergic neurons from this insult.

View Article and Find Full Text PDF

To investigate whether nitric oxide (*NO) is neurotoxic or neuroprotective in the brain, we compared the in vivo role of S-nitroso-N-acetylpenicillamine (SNAP) with that of sodium nitroprusside (SNP) on ferrous citrate-induced oxidative stress and neuronal loss in the rat nigrostriatal dopaminergic system. It is known that light irradiation releases *NO from its donor compounds; these irradiated *NO donors were used as sham controls in this study. Intranigral infusion of ferrous citrate (4.

View Article and Find Full Text PDF

Preconditioning adaptation induced by transient ischemia can increase brain tolerance to oxidative stress, but the underlying neuroprotective mechanisms are not fully understood. Recently, we developed a human brain-derived cell model to investigate preconditioning mechanism in SH-SY5Y neuroblastoma cells.(1) Our results demonstrate that a non-lethal serum deprivation-stress for 2 h (preconditioning stress) enhanced the tolerance to a subsequent lethal oxidative stress (24 h serum deprivation) and also to 1-methyl-4-phenyl-pyridinium (MPP(+)).

View Article and Find Full Text PDF

Using models of serum deprivation and 1-methyl-4-phenylpyridinium (MPP(+)), we investigated the mechanism by which thioredoxin (Trx) exerts its antiapoptotic protection in human neuroblastoma cells (SH-SY5Y) and preconditioning-induced neuroprotection. We showed that SH-SY5Y cells are highly sensitive to oxidative stress and responsive to both extracellularly administered and preconditioning-induced Trx. Serum deprivation and MPP(+) produced an elevation in the hydroxyl radicals, malondialdehyde and 4-hydroxy-2,3-nonenal (HNE), causing the cells to undergo mitochondria-mediated apoptosis.

View Article and Find Full Text PDF