Publications by authors named "Chuancheng Fu"

Coastal wetlands contain very large carbon (C) stocks-termed as blue C-and their management has emerged as a promising nature-based solution for climate adaptation and mitigation. The interactions among sources, pools, and molecular compositions of soil organic C (SOC) within blue C ecosystems (BCEs) remain elusive. Here, we explore these interactions along an 18,000 km long coastal line of salt marshes, mangroves, and seagrasses in China.

View Article and Find Full Text PDF

Seagrass meadows are natural carbon sinks, and their conservation and restoration play a crucial role in climate change mitigation and adaptation. However, blue carbon projects are hindered, in most nations, by major gaps in understanding the distribution and extent of seagrasses. Here, we show how satellite tracking of green turtles () provided a major advance in identifying novel seagrass blue carbon resources in the Red Sea.

View Article and Find Full Text PDF

Coastal-wetlands play a crucial role as carbon (C) reservoirs on Earth due to their C pool composition and functional sink, making them significant for mitigating global climate change. However, due to the development and utilization of wetland resources, many wetlands have been transformed into other land-use types. The current study focuses on the alterations in soil organic-C (SOC) in coastal-wetlands following reclamation into aquaculture ponds.

View Article and Find Full Text PDF

Tidal wetlands sequester vast amounts of organic carbon (OC) and enhance soil accretion. The conservation and restoration of these ecosystems is becoming increasingly geared toward "blue" carbon sequestration while obtaining additional benefits, such as buffering sea-level rise and enhancing biodiversity. However, the assessments of blue carbon sequestration focus primarily on bulk SOC inventories and often neglect OC fractions and their drivers; this limits our understanding of the mechanisms controlling OC storage and opportunities to enhance blue carbon sinks.

View Article and Find Full Text PDF

Blue carbon ecosystems (BCEs), located at the land-sea interface, provide critical ecological services including the buffering of anthropogenic pollutants. Understanding the interactions between trace element (TE) loads in BCEs and socioeconomic development is imperative to informing management plans to address pollution issues. However, the identification of anthropogenic TE pollution in BCEs remains uncertain due to the complex geochemical and depositional processes and asynchronous socioeconomic development along continental coastlines.

View Article and Find Full Text PDF

Selenium (Se), as an essential microelement, can be supplied through Se-biofortified food from Se-rich soils and associated farming practices for human health, while it can also cause eco-risks if overapplied. In this study, a multi-scale spatiotemporal meta-analysis was conducted to guide sustainable Se-rich farming in China by combining a long-term survey with a reviewed database. The weighted mean concentration, spatial distribution of soil Se, nationwide topsoil Se variation from cropping impacts and its bioavailability-based ecological risks were assessed and quantified.

View Article and Find Full Text PDF

Blue carbon ecosystems (BCEs) including mangroves, saltmarshes, and seagrasses are highly efficient for organic carbon (OC) accumulation due to their unique ability to trap high rates of allochthonous substrates. It has been suggested that the magnitude of OC preservation is constrained by nitrogen (N) and phosphorus (P) limitation in response to climate and anthropogenic changes. However, little is known about the connection of soil OC with N-P and their forms in response to allochthonous inputs in BCEs.

View Article and Find Full Text PDF

Protection and restoration of vegetated coastal ecosystems provide opportunities to mitigate climate change. Coastal shelter forests as one of vegetated coastal ecosystems play vital role on sandy coasts protection, but less attention is paid on their soil organic carbon (OC) sequestration potential. Here, we provide the first national-scale assessment of the soil OC stocks, fractions, sources and accumulation rates from 48 sites of shelter forests and 74 sites of sandy beaches across 22° of latitude in China.

View Article and Find Full Text PDF

Seagrass conservation is critical for mitigating climate change due to the large stocks of carbon they sequester in the seafloor. However, effective conservation and its potential to provide nature-based solutions to climate change is hindered by major uncertainties regarding seagrass extent and distribution. Here, we describe the characterization of the world's largest seagrass ecosystem, located in The Bahamas.

View Article and Find Full Text PDF

Long-term pig manure addition has been widely applied in red soil to improve soil fertility. However, the influence of combined utilization of pig manure and effective microbes (EM) on soil organic carbon (SOC) and Cd are not well understood. This study conducted a 23-year (1996-2019) long-term fertilization field trial to investigate the changes of different fractions of SOC and Cd under chemical fertilization (CF), pig manure (PM), and pig manure with effective microbes (PM + EM) treatments in an agricultural soil of Jiangxi Province, South China.

View Article and Find Full Text PDF

Vegetated coastal habitats (VCHs) rank among the most intense carbon sinks in natural ecosystems, playing an important role in the global carbon cycle. A significant part of the organic carbon (OC) they store may be allochthonous OC that has been sequestered elsewhere. Yet, the compositions of allochthonous OC are largely unknown.

View Article and Find Full Text PDF

Global vegetated coastal habitats (VCHs) represent a large sink for organic carbon (OC) stored within their soils. The regional patterns and causes of spatial variation, however, remain uncertain. The sparsity and regional bias of studies on soil OC stocks from Chinese VCHs have limited the reliable estimation of their capacity as regional and global OC sinks.

View Article and Find Full Text PDF

Purpose: Coastal orchards, with greater humidity and precipitation, are favorable for fruit production, as well as mildew fungi development, thus becoming hot spots of Cu concentrations in soils due to the use of copper-based fungicides. However, little is known on the variation tendencies of Cu availability and mobility from these soils. This study aims to investigate the accumulation, spatial-temporal distribution, and chemical fractions of soil Cu in one of the largest coastal apple-producing area with over 40-year intensive cultivation in China.

View Article and Find Full Text PDF
Article Synopsis
  • Mangroves, vital coastal wetlands in tropical areas, have poorly understood levels of microplastic pollution in their sediments.
  • The study examined 21 sampling sites along China's southeastern coast, finding various shapes, colors, and types of microplastics, with foams and fibers being the most common.
  • Results showed significant variations in microplastic abundance, ranging from 8.3 to 5738.3 items per kg of dry sediment, highlighting the need for better management and policy-making regarding this pollution issue.
View Article and Find Full Text PDF

Microplastics may lose buoyancy and occur in deeper waters and ultimately sink to the sediment and this may threaten plankton inhabiting in various water layers and benthic organisms. Here, we conduct the first survey on microplastics in the water column and corresponding sediment in addition to the surface water in the Bohai Sea. A total of 20 stations covering whole Bohai Sea were selected, which included 6 stations specified for water column studying.

View Article and Find Full Text PDF

Chemical pollution in the microplastics has been concerned worldwide as pollutants might potentially transfer from the environment to living organisms via plastics. Here, we investigate organophosphorus esters (OPEs) and phthalic acid esters (PAEs) in the beached microplastics collected from 28 coastal beaches of the Bohai and Yellow Sea in north China. The analyzed microplastics included polyethylene (PE) pellets and fragments, polypropylene (PP) flakes and fragments and polystyrene (PS) foams.

View Article and Find Full Text PDF

Mapping the spatial distribution of available copper (A-Cu) in orchard soils is important in agriculture and environmental management. However, data on the distribution of A-Cu in orchard soils is usually highly variable and severely skewed due to the continuous input of fungicides. In this study, ordinary kriging combined with planting duration (OK_PD) is proposed as a method for improving the interpolation of soil A-Cu.

View Article and Find Full Text PDF

Veterinary antibiotics are emerging contaminants of concern. A total of 139 samples comprising 104 marine sediments and 35 estuarine sediments were collected from the Bohai Sea area and analyzed for seventeen antibiotics. The results reveal that the presence and concentration of antibiotics were generally higher in the estuaries than in the sea.

View Article and Find Full Text PDF