Background: Recent studies have demonstrated that volatile anesthetic preconditioning confers myocardial protection against ischemia-reperfusion (IR) injury through activation of the reperfusion injury salvage kinase (RISK) pathway. As RISK has been shown to be impaired in hypercholesterolemia, we investigate whether anesthetic-induced cardiac protection was maintained in hypercholesterolemic rats.
Methods: Normocholesteolemic or hypercholesterolemic rat hearts were subjected to 30 min of ischemia and 2 h of reperfusion.
It had been proved that administration of sevoflurane for the first two minutes of reperfusion effectively protects the heart against reperfusion injury in rats in vivo. Our aim was to investigate the duration of effective sevoflurane administration and its underlying mechanism in isolated rat hearts exposed to global ischemia/reperfusion (I/R) injury. Adult male Sprague-Dawley rats were randomly divided into six groups (n=12): a sham-operation group, an I/R group, and four sevoflurane postconditioning groups (S2, S5, S10, and S15).
View Article and Find Full Text PDFDexmedetomidine (Dex) has been demonstrated to provide neuroprotection against ischemia/reperfusion (I/R) injury. However, the exact mechanism of this protection remains unknown. Here, we explored the neuroprotective effect of Dex in rats exposed to cerebral I/R-induced by middle cerebral artery occlusion (MCAO) and the role of phosphatidylinositol 3-kinase (PI3K)/Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), and glycogen synthase kinase-3β (GSK-3β) in this protective action.
View Article and Find Full Text PDF