J Antimicrob Chemother
October 2020
The aim of this study was to investigate the difference in resistance mechanisms and fitness of Salmonella Typhimurium (ST) and Salmonella Enteritidis (SE) mutants selected during the evolution of resistance under exposure to increasing ciprofloxacin concentrations in vitro. Mutations in quinolone target genes were screened by PCR. Phenotypic characterization included susceptibility testing by the broth dilution method, investigation of efflux activity and growth rate, and determination of the invasion of human intestinal epithelium cells in vitro.
View Article and Find Full Text PDFThe aim of this study was to determine the expression of eight other functional transporter genes upon acrAB inactivation and also the expression of acrAB when the function of eight other transporters are impaired in Salmonella enterica. We used single- or multigene deletion mutants (i.e.
View Article and Find Full Text PDFWe studied mechanisms of drug resistance development in Escherichia coli strains lacking efflux pump components. E. coli K12 deletion mutants were subjected to increasing concentrations of ciprofloxacin (CIP) to determine the frequency of target gene mutations.
View Article and Find Full Text PDFDifference in the development of resistance may be associated with the epidemiological spread and drug resistance of different Salmonella enterica serovar strains. In the present study, three susceptible S. enterica serovars, Typhimurium (ST), Enteritidis (SE), and Indiana (SI) strains, were subjected to stepwise selection with increasing ciprofloxacin concentrations.
View Article and Find Full Text PDFBackground And Objective: Mutations in DNA repair system are related to carcinogenesis. This study was to evaluate the correlations of polymorphisms and haplotypes of XPD gene with individual susceptibility to gastric cancer.
Methods: Genomic DNA were extracted from peripheral blood leukocytes of 207 gastric cancer patients and 212 healthy controls.