Systemic sclerosis (SSc) is an autoimmune disease characterized by immune disorders, vascular obliteration, excessive extracellular matrix deposition, skin fibrosis, and further pathological change of internal organs. To date, the exact etiology of this complicated disease remains unknown. Over the past few years, the roles of epigenetic modifications caused by environmental factors have been intensively studied in relation to the disease pathogenesis, and important advances have been made.
View Article and Find Full Text PDFIn previous study, we identified that microRNA (miR)-152 expression was down-regulated in RA model rats, and overexpression of miR-152 inhibited the canonical Wnt signaling through the DNA methyltransferase (DNMT1) inhibition. However, the exact molecular mechanisms of DNMT1 were unclear. In this work, we investigate whether DNMT1 affects the pathogenesis of RA model rats and targets the miR-152 promoter.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a symmetrical polyarticular autoimmune disease of unknown etiology. In this present study, we observed that the adenomatous polyposis coli (APC) expression is down-regulated and the expression of microRNA (miR)-663 increased significantly in synovium from RA patients compared with control. Target gene prediction for miR-663 revealed that the mRNA of APC gene, which is a member of the canonical Wnt signaling pathway, has a miR-663 binding site in its 3'-untranslated region (3'UTR).
View Article and Find Full Text PDFWhether the rheumatoid arthritis (RA) pathogenesis is regulated by microRNA (miRNA) is not entirely clear. In this study, we found that miR-375 was down-regulated significantly in fibroblast-like synoviocytes (FLS) in adjuvant-induced arthritis (AIA) rat model compared with control. Because the web-based software TargetScan and PicTar predict Frizzled 8 (FZD8) as the target of miR-375, we investigated whether up-regulated miR-375 plays a role in the activation of the canonical Wnt signaling by targeting the FZD8.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is an autoimmune and progressive systemic disease of unknown etiology. Research shows that fibroblast-like synoviocytes (FLS) participate in the cartilage erosion, synovial hyperplasia, inflammatory cytokine secretion and suggests that fibroblast-like synoviocytes (FLS) display a crucial role in RA pathogenesis. Recent studies have suggested the role of the Wnt signaling pathway in the pathogenesis of RA.
View Article and Find Full Text PDF