Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) is widely used in the design of genetically encoded fluorescent biosensors, which are powerful tools for monitoring the dynamics of biochemical activities in live cells. FRET ratio, defined as the ratio between acceptor and donor signals, is often used as a proxy for the actual FRET efficiency, which must be corrected for signal crosstalk using donor-only and acceptor-only samples. However, the FRET ratio is highly sensitive to imaging conditions, making direct comparisons across different experiments and over time challenging.
View Article and Find Full Text PDFUnderstanding how signaling networks are regulated offers valuable insights into how cells and organisms react to internal and external stimuli and is crucial for developing novel strategies to treat diseases. To achieve this, it is necessary to delineate the intricate interactions between the nodes in the network, which can be accomplished by measuring the activities of individual nodes under perturbation conditions. To facilitate this, we have recently developed a biosensor barcoding technique that enables massively multiplexed tracking of numerous signaling activities in live cells using genetically encoded fluorescent biosensors.
View Article and Find Full Text PDFBackground: Bacteria-based cancer therapy have demonstrated innovative strategies to combat tumors. Recent studies have focused on gram-negative bacterial outer membrane vesicles (OMVs) as a novel cancer immunotherapy strategy due to its intrinsic properties as a versatile carrier.
Method: Here, we developed an Human Papillomavirus (HPV)-associated E7 antigen displaying Salmonella-derived OMV vaccine, utilizing a Poly(L-arginine) cell penetrating peptide (CPP) to enhance HPV16 E7 (aa49-67) H-2 Db and OMV affinity, termed SOMV-9RE7.
Glycolysis has traditionally been thought to take place in the cytosol but we observed the enrichment of glycolytic enzymes in propagating waves of the cell cortex in human epithelial cells. These waves reflect excitable Ras/PI3K signal transduction and F-actin/actomyosin networks that drive cellular protrusions, suggesting that localized glycolysis at the cortex provides ATP for cell morphological events such as migration, phagocytosis, and cytokinesis. Perturbations that altered cortical waves caused corresponding changes in enzyme localization and ATP production whereas synthetic recruitment of glycolytic enzymes to the cell cortex enhanced cell spreading and motility.
View Article and Find Full Text PDFBacteria-based cancer therapy employs various strategies to combat tumors, one of which is delivering tumor-associated antigen (TAA) to generate specific immunity. Here, we utilized a poly-arginine extended HPV E7 antigen (9RE7) for attachment on Salmonella SL7207 outer membrane to synthesize the bacterial vaccine Salmonella-9RE7 (Sal-9RE7), which yielded a significant improvement in the amount of antigen presentation compared to the previous lysine-extended antigen coating strategy. In TC-1 tumor mouse models, Sal-9RE7 monotherapy decreased tumor growth by inducing E7 antigen-specific immunity.
View Article and Find Full Text PDFThe Ras/PI3K/ERK signaling network is frequently mutated in various human cancers including cervical cancer and pancreatic cancer. Previous studies showed that the Ras/PI3K/ERK signaling network displays features of excitable systems including propagation of activity waves, all-or-none responses, and refractoriness. Oncogenic mutations lead to enhanced excitability of the network.
View Article and Find Full Text PDFWe recently developed a biosensor barcoding approach for highly multiplexed tracking of molecular activities in live cells. In this protocol, we detail the labeling of cells expressing different genetically encoded fluorescent biosensors with a pair of barcoding proteins and parallel imaging. Signals from cells with the same barcodes are then pooled together to obtain the dynamics of the corresponding biosensor activity.
View Article and Find Full Text PDFGenetically encoded fluorescent biosensors are powerful tools for monitoring biochemical activities in live cells, but their multiplexing capacity is limited by the available spectral space. We overcome this problem by developing a set of barcoding proteins that can generate over 100 barcodes and are spectrally separable from commonly used biosensors. Mixtures of barcoded cells expressing different biosensors are simultaneously imaged and analyzed by deep learning models to achieve massively multiplexed tracking of signaling events.
View Article and Find Full Text PDFImmunotherapy for cervical cancer should target high-risk human papillomavirus types 16 and 18, which cause 50% and 20% of cervical cancers, respectively. Here, we describe the construction and characterization of the pBI-11 DNA vaccine via the addition of codon-optimized human papillomavirus 18 (HPV18) E7 and HPV16 and 18 E6 genes to the HPV16 E7-targeted DNA vaccine pNGVL4a-SigE7(detox)HSP70 (DNA vaccine pBI-1). Codon optimization of the HPV16/18 E6/E7 genes in pBI-11 improved fusion protein expression compared to that in DNA vaccine pBI-10.
View Article and Find Full Text PDFThe Ras/PI3K/extracellular signal-regulated kinases (ERK) signaling network plays fundamental roles in cell growth, survival, and migration and is frequently activated in cancer. Here, we show that the activities of the signaling network propagate as coordinated waves, biased by growth factor, which drive actin-based protrusions in human epithelial cells. The network exhibits hallmarks of biochemical excitability: the annihilation of oppositely directed waves, all-or-none responsiveness, and refractoriness.
View Article and Find Full Text PDFIn the original version of this Article, the label "RTK" in Figure 6a was inadvertently changed to "RTE". This has now been corrected in the PDF and HTML versions of the Article.
View Article and Find Full Text PDFThe original version of this Article contained an error in the spelling of the author Jr-Ming Yang, which was incorrectly given as J.-Ming Yang. This has now been corrected in both the PDF and HTML versions of the Article.
View Article and Find Full Text PDFThe Ras-ERK signaling pathway regulates diverse cellular processes in response to environmental stimuli and contains important therapeutic targets for cancer. Recent single cell studies revealed stochastic pulses of ERK activation, the frequency of which determines functional outcomes such as cell proliferation. Here we show that ERK pulses are initiated by localized protrusive activities.
View Article and Find Full Text PDFCell motility and invasiveness are prerequisites for dissemination, and largely account for cancer mortality. We have identified an actionable kinase, spleen tyrosine kinase (SYK), which is keenly tightly associated with tumor progression in ovarian cancer. Here, we report that active recombinant SYK directly phosphorylates cortactin and cofilin, which are critically involved in assembly and dynamics of actin filament through phosphorylation signaling.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most aggressive primary brain tumor in adults. The mechanisms that confer GBM cells their invasive behavior are poorly understood. The electroneutral Na-K-2Cl co-transporter 1 (NKCC1) is an important cell volume regulator that participates in cell migration.
View Article and Find Full Text PDFFor directional movement, eukaryotic cells depend on the proper organization of their actin cytoskeleton. This engine of motility is made up of highly dynamic nonequilibrium actin structures such as flashes, oscillations, and traveling waves. In Dictyostelium, oscillatory actin foci interact with signals such as Ras and phosphatidylinositol 3,4,5-trisphosphate (PIP3) to form protrusions.
View Article and Find Full Text PDFNumerous models explain how cells sense and migrate towards shallow chemoattractant gradients. Studies show that an excitable signal transduction network acts as a pacemaker that controls the cytoskeleton to drive motility. Here we show that this network is required to link stimuli to actin polymerization and chemotactic motility and we distinguish the various models of chemotaxis.
View Article and Find Full Text PDFIt is generally believed that cytoskeletal activities drive random cell migration, whereas signal transduction events initiated by receptors regulate the cytoskeleton to guide cells. However, we find that the cytoskeletal network, involving SCAR/WAVE, Arp 2/3 and actin-binding proteins, is capable of generating only rapid oscillations and undulations of the cell boundary. The signal transduction network, comprising multiple pathways that include Ras GTPases, PI(3)K and Rac GTPases, is required to generate the sustained protrusions of migrating cells.
View Article and Find Full Text PDFChemotaxis involves the coordinated action of separable but interrelated processes: motility, gradient sensing, and polarization. We have hypothesized that these are mediated by separate modules that account for these processes individually and that, when combined, recreate most of the behaviors of chemotactic cells. Here, we describe a mathematical model where the modules are implemented in terms of reaction-diffusion equations.
View Article and Find Full Text PDFDictyostelium discoideum is an excellent model organism for the study of directed cell migration, since Dictyostelium cells show robust chemotactic responses to the chemoattractant cAMP. Many powerful experimental tools are applicable, including forward and reverse genetics, biochemistry, microscopy, and proteomics. Recent studies have demonstrated that many components involved in chemotaxis are functionally conserved between human neutrophils and Dictyostelium amoebae.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2010
Cells have an internal compass that enables them to move along shallow chemical gradients. As amoeboid cells migrate, signaling events such as Ras and PI3K activation occur spontaneously on pseudopodia. Uniform stimuli trigger a symmetric response, whereupon cells stop and round up; then localized patches of activity appear as cells spread.
View Article and Find Full Text PDFPhysiological activation of PI3Kα is brought about by the release of the inhibition by p85 when the nSH2 binds the phosphorylated tyrosine of activated receptors or their substrates. Oncogenic mutations of PI3Kα result in a constitutively activated enzyme that triggers downstream pathways that increase tumor aggressiveness and survival. Structural information suggests that some mutations also activate the enzyme by releasing p85 inhibition.
View Article and Find Full Text PDFChemotaxis, the directed migration of cells in chemical gradients, is a vital process in normal physiology and in the pathogenesis of many diseases. Chemotactic cells display motility, directional sensing, and polarity. Motility refers to the random extension of pseudopodia, which may be driven by spontaneous actin waves that propagate through the cytoskeleton.
View Article and Find Full Text PDF