Publications by authors named "Chuan-Bian Lim"

Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis.

View Article and Find Full Text PDF

Unlabelled: Although external beam radiotherapy (xRT) is commonly used to treat central nervous system (CNS) tumors in patients of all ages, young children treated with xRT frequently experience life-altering and dose-limiting neurocognitive impairment (NI) while adults do not. The lack of understanding of mechanisms responsible for these differences has impeded the development of neuroprotective treatments. Using a newly developed mouse model of xRT-induced NI, we found that neurocognitive function is impaired by ionizing radiation in a dose- and age-dependent manner, with the youngest animals being most affected.

View Article and Find Full Text PDF

Unlabelled: Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis.

View Article and Find Full Text PDF

A role of tumor-suppressive activity of p53 in the tumor microenvironment (TME) has been implicated but remains fairly understudied. To address this knowledge gap, we leveraged our MdmxS314A mice as recipients to investigate how implanted tumor cells incapacitate host p53 creating a conducive TME for tumor progression. We found that tumor cell-associated stress induced p53 downregulation in peritumor cells via an MDMX-Ser314 phosphorylation-dependent manner.

View Article and Find Full Text PDF

Renewable tissues exhibit heightened sensitivity to DNA damage, which is thought to result from a high level of p53. However, cell proliferation in renewable tissues requires p53 down-regulation, creating an apparent discrepancy between the p53 level and elevated sensitivity to DNA damage. Using a combination of genetic mouse models and pharmacologic inhibitors, we demonstrate that it is p53-regulated MDM2 that functions together with MDMX to regulate DNA damage sensitivity by targeting EZH2 (enhancer of zeste homolog 2) for ubiquitination/degradation.

View Article and Find Full Text PDF

Although ΔNp63 is known to promote cancer cell proliferation, the underlying mechanism behind its oncogenic function remains elusive. We report here a functional interplay between ΔNp63 and Δ133p53. These two proteins are co-overexpressed in a subset of human cancers and cooperate to promote cell proliferation.

View Article and Find Full Text PDF

TRAF6 plays a crucial role in the regulation of the innate and adaptive immune responses. Although studies have shown that TRAF6 has oncogenic activity, the role of TRAF6 in melanoma is unclear. Here, we report that TRAF6 is overexpressed in primary as well as metastatic melanoma tumors and melanoma cell lines.

View Article and Find Full Text PDF

Mesothelial cells are fundamental to the maintenance of serosal integrity and homeostasis and play a critical role in normal serosal repair following injury. However, when normal repair mechanisms breakdown, mesothelial cells take on a profibrotic role, secreting inflammatory, and profibrotic mediators, differentiating and migrating into the injured tissues where they contribute to fibrogenesis. The development of new molecular and cell tracking techniques has made it possible to examine the origin of fibrotic cells within damaged tissues and to elucidate the roles they play in inflammation and fibrosis.

View Article and Find Full Text PDF

Gli transcription factors of the Hedgehog (Hh) pathway have been reported to be drivers of malignant mesothelioma (MMe) cell survival. The Gli inhibitor GANT61 induces apoptosis in various cancer cell models, and has been associated directly with Gli inhibition. However various chemotherapeutics can induce cell death through generation of reactive oxygen species (ROS) but whether ROS mediates GANT61-induced apoptosis is unknown.

View Article and Find Full Text PDF

Microtubules are a highly validated target in cancer therapy. However, the clinical development of tubulin binding agents (TBA) has been hampered by toxicity and chemoresistance issues and has necessitated the search for new TBAs. Here, we report the identification of a novel cell permeable, tubulin-destabilizing molecule--4,5,6,7-tetrahydro-1H-indazole-3-carboxylic acid [1p-tolyl-meth-(E)-ylidene]-hydrazide (termed as Suprafenacine, SRF).

View Article and Find Full Text PDF

Background: The Hedgehog (HH) signaling pathway is critical for embryonic development and adult homeostasis. Recent studies have identified regulatory roles for this pathway in certain cancers with mutations in the HH pathway genes. The extent to which mutations of the HH pathway genes are involved in the pathogenesis of malignant mesothelioma (MMe) is unknown.

View Article and Find Full Text PDF

Background: Numerous studies have demonstrated that autophagy plays a vital role in maintaining cellular homeostasis. Interestingly, several anticancer agents were found to exert their anticancer effects by triggering autophagy. Emerging data suggest that autophagy represents a novel mechanism that can be exploited for therapeutic benefit.

View Article and Find Full Text PDF

An essential oil extract, derived from the rhizome of Curcuma wenyujin (CWE), possesses antioxidative, antimicrobial, and anti-inflammatory properties. However, it remains unknown how exactly CWE inhibits tumor growth. In this study, using human cervical cancer HeLa cells, the authors postulated that CWE has the ability to inhibit tumor growth.

View Article and Find Full Text PDF

Kruppel-like factor 4 (KLF4) belongs to a family of evolutionarily conserved zinc finger-containing transcription factors. It has been shown to mediate self renewal and pluripotency, regulate adipogenesis and play a critical role in monocyte differentiation. KLF4 is also highly expressed in squamous cell carcinomas and in 70% of all primary human breast cancers, suggesting a putative role for KLF4 as being an oncogene and as an antiapoptotic factor.

View Article and Find Full Text PDF

Background: FAT10 is a member of the ubiquitin-like-modifier family of proteins. Over-expression of the FAT10 gene was observed in the tumors of several epithelial cancers. High FAT10 expression was found to lead to increased chromosome instability via the reduction in the kinetochore localization of MAD2 during the prometaphase stage of the cell-cycle.

View Article and Find Full Text PDF

Nosocomial isolates of Pseudomonas aeruginosa exhibit high rates of resistance to antibiotics, and are often multidrug resistant. P. aeruginosa clinical isolates (n = 56) were obtained from ICU patients in a hospital in Pakistan over a 3-y period.

View Article and Find Full Text PDF