Utilization of ubiquitous low-grade waste heat constitutes a possible avenue towards soft matter actuation and energy recovery opportunities. While most soft materials are not all that smart relying on power input of some kind for continuous response, we conceptualize a self-locked thermo-mechano feedback for autonomous motility and energy generation functions. Here, the low-grade heat usually dismissed as 'not useful' is used to fuel a soft thermo-mechano-electrical system to perform perpetual and untethered multimodal locomotions.
View Article and Find Full Text PDFOne-dimensional (1D) metallic nanocrystals constitute an important class of plasmonic materials for localization of light into subwavelength dimensions. Coupled with their intrinsic conductive properties and extended optical paths for light absorption, metallic nanowires are prevalent in light-harnessing applications. However, the transverse surface plasmon resonance (SPR) mode of traditional multiply twinned nanowires often suffers from weaker electric field enhancement due to its low degree of morphological curvature in comparison to other complex anisotropic nanocrystals.
View Article and Find Full Text PDFSurface plasmon-based photonics offers exciting opportunities to enable fine control of the site, span, and extent of mechanical harvesting. However, the interaction between plasmonic photothermic and piezoresponse still remains underexplored. Here, spatially localized and controllable piezoresponse of a hybrid self-polarized polymeric-metallic system that correlates to plasmonic light-to-heat modulation of the local strain is demonstrated.
View Article and Find Full Text PDFAt present, there are various limitations to harvesting ambient waste heat which include the lack of economically viable material and innovative design features that can efficiently recover low grade heat for useful energy conversion. In this work, a thermal nanophotonic-pyroelectric (TNPh-pyro) scheme consisting of a metamaterial multilayer and pyroelectric material, which performs synergistic waste heat rejection and photothermal heat-to-electricity conversion, is presented. Unlike any other pyroelectric configuration, this conceptual design deviates from the conventional by deliberately employing back-reflecting NIR to enable waste heat reutilization/recuperation to enhance pyroelectric generation, avoiding excessive solar heat uptake and also retaining high visual transparency of the device.
View Article and Find Full Text PDFSolar energy represents a robust and natural form of resource for environment remediation via photocatalytic pollutant degradation with minimum associated costs. However, due to the complexity of the photodegradation process, it has been a long-standing challenge to develop reliable photocatalytic systems with low recombination rates, excellent recyclability, and high utilization rates of solar energy, especially in the visible light range. In this work, a ternary hetero-nanostructured Ag-CuO-ZnO nanotube (NT) composite is fabricated via facile and low-temperature chemical and photochemical deposition methods.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) spectroscopy affords a rapid, highly sensitive, and nondestructive approach for label-free and fingerprint diagnosis of a wide range of chemicals. It is of great significance to develop large-area, uniform, and environmentally friendly SERS substrates for in situ identification of analytes on complex topological surfaces. In this work, we demonstrate a biodegradable flexible SERS film via irreversibly and longitudinally stretching metal deposited biocompatible poly(ε-caprolactone) film.
View Article and Find Full Text PDFOne-pot electroless galvanic cell deposition of a 3D hierarchical semiconductor-metal-semiconductor interlaced nanoarray is demonstrated. The fabricated 3D photoanode deviates from the typical planar geometry, and aims to optimize the effective surface area for light harvesting and long-range charge transfer-collection pathways.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2016
We present a room temperature topotactic consolidation of cobalt and zinc constituents into monocrystalline CoZn hydroxide nanosheets, by a localized corrosion of zinc foils with cobalt precursors. By virtue of similar lattice orientation and structure coordination, the hybrid hydroxides amalgamate atomically without phase separation. Importantly, this in situ growth strategy, in combination with configurable percolated nanosheets, renders a high areal density of catalytic sites, immobilized structures, and conductive pathways between the nanosheets and underlying foils-all of which allow monocrystalline CoZn hydroxide nanosheet materials to function as effective electrodes for electrochemical oxygen evolution reactions.
View Article and Find Full Text PDFA macroporous carbon network combined with mesoporous catalyst immobilization by a template method gives a metal-oxide-organic framework (MoOF) foam microreactor that readily soaks up pollutants and localizes solar energy in itself, leading to effective degradation of water pollutants (e.g., methyl orange (MO) and also hydrogen generation.
View Article and Find Full Text PDFUtilizing solar energy for environmental and energy remediations based on photocatalytic hydrogen (H2) generation and water cleaning poses great challenges due to inadequate visible-light power conversion, high recombination rate, and intermittent availability of solar energy. Here, we report an energy-harvesting technology that utilizes multiple energy sources for development of sustainable operation of dual photocatalytic reactions. The fabricated hybrid cell combines energy harvesting from light and vibration to run a power-free photocatalytic process that exploits novel metal-semiconductor branched heterostructure (BHS) of its visible light absorption, high charge-separation efficiency, and piezoelectric properties to overcome the aforementioned challenges.
View Article and Find Full Text PDF