A major environmental concern related to nuclear energy is wastewater contaminated with uranium, thus necessitating the development of pollutant-reducing materials with efficiency and effectiveness. Herein, highly selective mesoporous silicas functionalized with amine-bridged diacetamide ligands SBA-15-ABDMA were prepared. Different spectroscopy techniques were used to probe the chemical environment and reactivity of the chelating ligands before and after sorption.
View Article and Find Full Text PDFPd-catalyzed Hiyama vinylation reaction of non-activated aryl chlorides and bromides under mild conditions was developed. The use of efficient vinyl donors and electron-rich sterically hindered phosphine ligands was critical for the success of the reaction. The products of this transformation can be used for Am/Cm separation, an important challenge in nuclear fuel reprocessing.
View Article and Find Full Text PDFTo aid the design of a hierarchically porous unconventional metal-phosphonate framework (HP-UMPF) for practical radioanalytical separation, a systematic investigation of the hydrolytic stability of bulk phase against acidic corrosion has been carried out for an archetypical HP-UMPF. Bulk dissolution results suggest that aqueous acidity has a more paramount effect on incongruent leaching than the temperature, and the kinetic stability reaches equilibrium by way of an accumulation of a partial leached species on the corrosion conduits. A variation of particle morphology, hierarchical porosity and backbone composition upon corrosion reveals that they are hydrolytically resilient without suffering any great degradation of porous texture, although large aggregates crack into sporadic fractures while the nucleophilic attack of inorganic layers cause the leaching of tin and phosphorus.
View Article and Find Full Text PDFCombining the merits of soft-templating and perchlorate oxidation methods, the first-case investigation of niobium alkylphosphonates has uncovered their unique morphology, backbone composition, thermal behavior and huge potentiality as radioanalytical separation materials. These hierarchically porous solids are random aggregates of densely stacked nanolayers perforated with worm-like holes or vesicular voids, manifesting the massif-, tower-like "polymer brush" elevated up to ∼150nm driven by the minimal surface free energy principle. These coordination polymers consist of distorted niobium (V) ions strongly linked with tetrahedral alkylphosphonate building units, exposing uncoordinated phosphonate moieties and defective metal sites.
View Article and Find Full Text PDFChem Commun (Camb)
July 2015
Fluorescent recognition of uranyl ions was achieved using a phosphorylated cyclic peptide, which can be used as a fluorescent sensor for the detection of uranyl ions with high selectivity and sensitivity.
View Article and Find Full Text PDFOrg Biomol Chem
March 2015
A novel "one-pot" reaction was developed for the synthesis of aryl or heteroaryl-substituted amidoxime compounds containing various functional groups. Fluorescence titration experiments coupled with theoretical analysis revealed that the steric hindrance and electronic effects of substituents influence the binding ability of the amidoxime compounds to uranyl ions.
View Article and Find Full Text PDFChem Commun (Camb)
February 2015
A copper-catalyzed cross-coupling reaction of epoxides with arylboronates is described. This reaction is not limited to aromatic epoxides, because aliphatic epoxides are also suitable substrates. In addition, N-sulfonyl aziridines can be successfully converted into the products.
View Article and Find Full Text PDFThe first copper-catalyzed/promoted sp(3)-C Suzuki-Miyaura coupling reaction of gem-diborylalkanes with nonactivated electrophilic reagents is reported. Not only 1, 1-diborylalkanes but also some other gem-diborylalkanes can be coupled with nonactivated primary alkyl halides, offering a new method for sp(3)C-sp(3)C bond formation and, simultaneously, providing a new strategy for the synthesis of alkylboronic esters.
View Article and Find Full Text PDFA copper-catalyzed reductive cross-coupling reaction of nonactivated alkyl tosylates and mesylates with alkyl and aryl bromides was developed. It provides a practical method for efficient and cost-effective construction of aryl-alkyl and alkyl-alkyl CC bonds with stereocontrol from readily available substrates. When used in an intramolecular fashion, the reaction enables convenient access to various substituted carbo- or heterocycles, such as 2,3-dihydrobenzofuran and benzochromene derivatives.
View Article and Find Full Text PDFA novel reaction that generates 1,5-disubstituted carbohydrazones via the carbonylation of tosylhydrazones has been developed. For the first time, the inexpensive, readily available, environmentally friendly, and nongaseous potassium carbonate is used as the carbonyl donor for the transformation. The reaction system exhibited tolerance with various functional groups and affords the desired products in good to excellent yields.
View Article and Find Full Text PDFPractical catalytic cross-coupling of secondary alkyl electrophiles with secondary alkyl nucleophiles under Cu catalysis has been realized. The use of TMEDA and LiOMe is critical for the success of the reaction. This cross-coupling reaction occurs via an S(N)2 mechanism with inversion of configuration and therefore provides a general approach for the stereocontrolled formation of C-C bonds between two tertiary carbons from chiral secondary alcohols.
View Article and Find Full Text PDFEasy access: An unprecedented copper-catalyzed cross-coupling reaction of the title compounds with diboron reagents is described (see scheme; Ts = 4-toluenesulfonyl). This reaction can be used to prepare both primary and secondary alkylboronic esters having diverse structures and functional groups. The resulting products would be difficult to access by other means.
View Article and Find Full Text PDFAnti-Helicobacter pylori heat shock protein 60 (HpHSP60) antibodies are usually found in H. pylori-infected patients and are known to be associated with the progression of gastric diseases. However, the effects of these antibodies on the functions of HpHSP60 have not been identified.
View Article and Find Full Text PDFResin-bound organic ionic bases (RBOIBs) were developed in which tetraalkyl-ammonium or phosphonium cations are covalently attached to solid resins. The application tests showed that the performance of the tetraalkyl-ammonium-type RBOIBs is slightly better than that of the corresponding Cs salts in Cu-catalyzed C-N cross-couplings, while the tetraalkylphosphonium-type RBOIBs are significantly better than all the inorganic bases. With these newly developed RBOIBs, room-temperature Cu-catalyzed C-N coupling with various nonactivated aryl iodides and even aryl bromides can be readily accomplished.
View Article and Find Full Text PDF