Publications by authors named "Chu-Hua Lu"

Background: Organic bioelectronic devices consisting of alternating poly(3,4-ethylenedioxythiophene) (PEDOT) and reduced graphite oxide (rGO) striped microelectrode arrays were fabricated by lithography technology. It has been demonstrated that the organic bioelectronic devices can be used to spatially and temporally manipulate the location and proliferation of the neuron-like pheochromocytoma cells (PC-12 cells).

Methods: By coating an electrically labile contact repulsion layer of poly(l-lysine-graft-ethylene glycol) (PLL-g-PEG) on the PEDOT electrode, the location and polarity of the PC-12 cells were confined to the rGO electrodes.

View Article and Find Full Text PDF

In this study, the surface of π-conjugated polymer, poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV), was successfully modified with the sulfate anion (SO(4-)) groups by the confined photo-catalytic oxidation (CPO). After the surface modification, the water contact angle of MEH-PPV is changed from 95.5° to 82.

View Article and Find Full Text PDF

Two flexible ether bonds were designed to connect two pyrene rings on a polyhedral oligomeric silsesquioxane (BPy-POSS) to enrich the fraction of "intrinsic intramolecular pyrene-dimer" on the surface of crystal isobutyl-POSS (iBu-POSS) thin-films. Compared to the monomer emission of 1-pyrenemethanol (Py-OH), the emission spectra of BPy-POSS in dichloromethane show the large proportion of intramolecular and intermolecular excimers due to the formation of pyrenyl dimers or aggregates via the easy rotation of two adjacent ether bonds and the π-π interaction of pyrene rings, respectively. By blending inert iBu-POSS, the fluorescent dimers or aggregates of 5 wt.

View Article and Find Full Text PDF

This paper describes the miscibility and self-assembly, mediated by hydrogen-bonding interactions, of new block copolymer/nanoparticle blends. The morphologies adopted by the immiscible poly[(ε-caprolactone)-block-(4-vinyl pyridine)] (PCL-b-P4VP) diblock copolymer changes upon increasing the number of competitive hydrogen-bonding interactions after adding increasing amounts of octaphenol polyhedral oligomeric silsesquioxane (OP-POSS). Transmission electron microscopy reveals morphologies that exhibit high degrees of long-range order, such as cylindrical and spherical structures, at relatively low OP-POSS contents, and short-range order or disordered structures at higher OP-POSS contents.

View Article and Find Full Text PDF