Infections caused by the influenza virus lead to both epidemic and pandemic outbreaks in humans and animals. Owing to their rapid production, safety, and stability, DNA vaccines represent a promising avenue for eliciting immunity and thwarting viral infections. While DNA vaccines have demonstrated substantial efficacy in murine models, their effectiveness in larger animals remains subdued.
View Article and Find Full Text PDFObjective: To generate immunity against human papillomavirus (HPV), the use of a recombinant DNA vaccine to carry an appropriate target gene is a promising and cost-effective approach. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a potent immunomodulatory cytokine that enhances the efficacy of vaccines by promoting the development and prolongation of humoral and cellular immunity. In this study, we linked codon-optimized GM-CSF (cGM-CSF) to the HPV16 E7 sequence as fused protein and evaluated the immunogenic potential of this DNA vaccine.
View Article and Find Full Text PDFThe clinical manifestations of cutaneous adverse drug reactions are variable with different severity. Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are life-threatening severe cutaneous adverse reactions (SCARs) majorly caused by drugs and mediated by cytotoxic T cells. In this review, we focus on risk factors that contribute to the development of SJS/TEN and review the updated immune mechanism, preventive strategies as well as current therapeutic approaches for SJS/TEN.
View Article and Find Full Text PDFWhile immunotherapy holds great promise for combating cancer, the limited efficacy due to an immunosuppressive tumor microenvironment and systemic toxicity hinder the broader application of cancer immunotherapy. Here, we report a combinatorial immunotherapy approach that uses a highly efficient and tumor-selective gene carrier to improve anticancer efficacy and circumvent the systemic toxicity. In this study, we engineered tumor-targeted lipid-dendrimer-calcium-phosphate (TT-LDCP) nanoparticles (NPs) with thymine-functionalized dendrimers that exhibit not only enhanced gene delivery capacity but also immune adjuvant properties by activating the stimulator of interferon genes (STING)-cGAS pathway.
View Article and Find Full Text PDFAbnormal tumour vasculature has a significant impact on tumour progression and response to therapy. Nitric oxide (NO) regulates angiogenesis and maintains vascular homeostasis and, thus, can be delivered to normalize tumour vasculature. However, a NO-delivery system with a prolonged half-life and a sustained release mechanism is currently lacking.
View Article and Find Full Text PDFEctopic expression of codon-modified granulocyte-macrophage colony-stimulating factor (cGM-CSF) in TC-1 cells (TC-1/cGM-CSF), a model cell line for human papillomavirus (HPV)-infected cervical cancer cells, increased the expression level of GM-CSF and improved the efficacy of tumor cell-based vaccines in a cervical cancer mouse model. The number of vaccine doses required to induce a long-term immune response in a cervical cancer mouse model is poorly understood. Here, we investigated one, three, and five doses of the irradiated TC-1/cGM-CSF vaccine to determine which dose was effective in inducing a greater immune response and the suppression of tumors.
View Article and Find Full Text PDFHandling the aqueous two-phase systems (ATPSs) formed by liquid-liquid phase separation (LLPS) relies on the accurate construction of binodal curves and tie-lines, which delineate the polymer concentrations required for phase separation and depict the properties of the resulting phases, respectively. Various techniques to determine the binodal curves and tie-lines of ATPSs exist, but most rely on manually pipetting relatively large volumes of fluids in a slow and tedious manner. We describe a method to determine ATPS binodals and tie-lines that overcomes these disadvantages: microscale droplet manipulation by electrowetting-on-dielectric (EWOD).
View Article and Find Full Text PDFUnlabelled: The anticancer efficacy of TNF-related apoptosis-inducing ligand (TRAIL)-based therapy is limited because of systemic toxicity, poor bioavailability, and development of TRAIL resistance. We developed a tumor-targeted LCPP (lipid/calcium/phosphate/protamine) nanoparticle (NP) to deliver TRAIL plasmid DNA (pDNA) into hepatocellular carcinoma (HCC) cells in a mouse model of HCC. TRAIL pDNA was encapsulated in a pH stimuli-responsive calcium phosphate (CaP) core, and protamine was added to facilitate nuclear delivery of pDNA.
View Article and Find Full Text PDFGranulocyte macrophage-colony stimulating factor (GM-CSF) is a potent immunomodulatory cytokine that is known to facilitate vaccine efficacy by promoting the development and prolongation of both humoral and cellular immunity. Here, we investigated a novel vaccine approach using a human papillomavirus (HPV)-16 E6/E7-transformed cell line, TC-1, that ectopically expresses a codon-optimized 26-11-2015 murine GM-CSF (cGM-CSF). Ectopically expressing cGM-CSF in TC-1 (TC-1/cGM) cells significantly increased expression of a GM-CSF that was functionally identical to wt GM-CSF by 9-fold compared with ectopically expressed wild type GM-CSF in TC-1 cells (TC-1/wt).
View Article and Find Full Text PDFThis study proposes a vascular endothelial growth factor (VEGF) biosensor for diagnosing various stages of cervical carcinoma. In addition, VEGF concentrations at various stages of cancer therapy are determined and compared to data obtained by computed tomography (CT) and cancer antigen 125 (CA-125). The increase in VEGF concentrations during operations offers useful insight into dosage timing during cancer therapy.
View Article and Find Full Text PDFPole-to-pole oscillations of the Min proteins in Escherichia coli are required for the proper placement of the division septum. Direct interaction of MinE with the cell membrane is critical for the dynamic behavior of the Min system. In vitro, this MinE-membrane interaction led to membrane deformation; however, the underlying mechanism remained unclear.
View Article and Find Full Text PDFDynamic oscillation of the Min system in Escherichia coli determines the placement of the division plane at the midcell. In addition to stimulating MinD ATPase activity, we report here that MinE can directly interact with the membrane and this interaction contributes to the proper MinDE localization and dynamics. The N-terminal domain of MinE is involved in direct contact between MinE and the membranes that may subsequently be stabilized by the C-terminal domain of MinE.
View Article and Find Full Text PDF