Publications by authors named "Chu Yi Yu"

Six C-6 fluorinated d-swainsonine derivatives and their enantiomers have been designed based on initial docking calculations, and synthesized from enantiomeric ribose-derived aldehydes, respectively. Glycosidase inhibition assay of these derivatives with d-swainsonine (1) and l-swainsonine (ent-1) as contrasts found that the C-6 fluorinated d-swainsonine derivatives with C-8 configurations as R (α) showed specific and potent inhibitions of jack bean α-mannosidase (model enzyme of Golgi α-mannosidase II); whereas their enantiomers with C-8 configurations as S (β) were powerful and selective α-l-rhamnosidase inhibitors. Molecular docking calculations found the C-6 fluorinatedd-swainsonine derivatives 21, 24 and 25 with highly coincident binding conformations with d-swainsonine (1) in their interactions with the active site of α-mannosidase (PDB ID: 1HWW).

View Article and Find Full Text PDF

Prolonged activation of the type I interferon (IFN-I) pathway leads to autoimmune diseases such as systemic lupus erythematosus (SLE). Metabolic regulation of cytokine signaling is critical for cellular homeostasis. Through metabolomics analyses of IFN-β-activated macrophages and an IFN-stimulated-response-element reporter screening, we identified spermine as a metabolite brake for Janus kinase (JAK) signaling.

View Article and Find Full Text PDF

Broussonetine S (9), its C-1' and C-10' stereoisomers, and their corresponding enantiomers have been synthesized from enantiomeric arabinose-derived cyclic nitrones, with cross metathesis (CM), epoxidation and Keck asymmetric allylation as key steps. Glycosidase inhibition assays showed that broussonetine S (9) and its C-10' epimer (10'-epi-9) were nanomolar inhibitors of bovine liver β-galactosidase and β-glucosidase; while their C-1' stereoisomers were 10-fold less potent towards these enzymes. The glycosidase inhibition results and molecular docking calculations revealed the importance of the configurations of pyrrolidine core and C-1' hydroxyl for inhibition potency and spectra.

View Article and Find Full Text PDF

Rhythm is a key feature of music and language, but the way rhythm unfolds within each domain differs. Music induces perception of a beat, a regular repeating pulse spaced by roughly equal durations, whereas speech does not have the same isochronous framework. Although rhythmic regularity is a defining feature of music and language, it is difficult to derive acoustic indices of the differences in rhythmic regularity between domains.

View Article and Find Full Text PDF

A series of iso--DNJ and L-isoDALDP derivatives were synthesized from dithioacetal 16 with sequential and highly diastereoselective Ho and Henry reactions, and aziridinium intermediate-mediated ring rearrangement as key steps. Glycosidase inhibition assay found four of them as selective α-glucosidase inhibitors, and the less substituted compound 30 showed more potent α-glucosidase inhibition (IC = 9.3 μM) than the others.

View Article and Find Full Text PDF

A series of DAB-peptide and DAB-dipeptide derivatives were synthesized from D-tartrate-derived nitrone 18. The DAB peptides 16 are derivatives of ,-3,4-dihydroxy-L-proline. Glycosidase inhibition assay found four of them to be weak and selective bovine liver β-galactosidase inhibitors, and the C-2' methyl substituted compound 23b showed the most potent β-galactosidase inhibition (IC = 0.

View Article and Find Full Text PDF

A series of α-1-C-alkyl DAB (1,4-dideoxy-1,4-imino-d-arabinitol) and LAB (1,4-dideoxy-1,4-imino-l-arabinitol) derivatives with aryl substituents have been designed as analogues of broussonetine W (12), and assayed as glycosidase inhibitors. While the inhibition spectrum of α-1-C-alkyl DAB derivative 16 showed a good correlation to that of broussonetine W (12), introduction of substituents on the terminal aryl (17a-f) or hydroxyl groups at C-1' position of the alkyl chains (18a-e) decreased their α-glucosidase inhibitions but greatly improved their inhibitions of bovine liver β-glucosidase and β-galactosidase. Furthermore, epimerization of C-1' configurations of compounds 18a-e clearly lowered their inhibition potency of bovine liver β-glucosidase and β-galactosidase.

View Article and Find Full Text PDF

A series of C-6 fluorinated casuarine derivatives have been synthesized via organocatalytic stereoselective α-fluorination of iminosugar-based aldehydes or direct nucleophilic fluorination of polyhydroxylated pyrrolizidines. Glycosidase assays against various glycosidases allowed systematic structure-activity relationship (SAR) study using molecular docking calculations. Introduction of fluorine atom(s) at C-6 position removed the trehalase and maltase inhibitory activities of all casuarine derivatives, and greatly increased their specificity towards amyloglucosidase.

View Article and Find Full Text PDF

L--Deoxynojirimycin (L--DNJ) itself showed no affinity for human lysosomal acid α-glucosidase (GAA), whereas 5--methyl-L--DNJ showed a strong affinity for GAA, comparable to the glucose analog DNJ, with a value of 0.060 μM. This excellent affinity for GAA and enzyme stabilization was observed only when methyl and ethyl groups were introduced.

View Article and Find Full Text PDF

Enantiomeric series of C-4 hydroxymethyl depleted DAB and LAB derivatives (trans, trans-2-C-aryl-3,4-dihydroxypyrrolidines), designed as β-glucosidase inhibitors by molecular docking calculations, have been synthesized in 2 steps from l- and d-tartaric acid derived enantiomeric cyclic nitrones 29L and 29D, respectively. Both series of C-4 hydroxymethyl depleted DAB and LAB derivatives 28Da-e and 28La-e, which are structurally trans, trans-2-C-aryl-3,4-dihydroxypyrrolidines, were potent and selective human lysosome acid β-glucosidase (GCase) inhibitors, of which 28Dd and 28Ld with C-4 biphenyls showed the highest potency relative to other compounds of the same series. The work provided a series of pyrrolidine-type potent and selective GCase inhibitors with minimal hydroxyl substitutions and synthetic procedures.

View Article and Find Full Text PDF

C-7-fluorinated derivatives of two important polyhydroxylated pyrrolizidines, casuarine and australine, were synthesized with organocatalytic stereoselective α-fluorination of aldehydes as the key step. The strategy is extensively applicable to some synthetically challenging fluorinated iminosugars and carbohydrates. The docking studies indicated that the potent inhibitions of trehalase and amyloglucosidase by the fluorinated polyhydroxylated pyrrolizidines are due to the interaction modes dominated by fluorine atoms in these iminosugars with the amino acids' residues of the corresponding enzymes.

View Article and Find Full Text PDF

Two series of C-4 alkylated and arylated LAB (1,4-dideoxy-1,4-imino-l-arabinitol) and DAB (1,4-dideoxy-1,4-imino-d-arabinitol) derivatives, synthesized in 6 steps from enantiomeric cyclic nitrones derived from l- and d-tartaric acid, were designed and assayed against various glycosidases. C-4 Branched LAB alkyl and phenyl derivatives 5La-d showed potent α-glucosidase inhibition, particularly against human lysosomal acid α-glucosidase; C-4 DAB derivatives 5Da-d, with small alkyl groups, showed enhanced inhibition of rat intestinal maltase and sucrase. Both enantiomeric C-4 arylated derivatives 5Lf-l and 5Df-l exhibited potent and selective α-glucosidase inhibition; and compound 5Li with a para-electron donating group (EDG) on its C-4 aryl group, showed the most potent rat intestinal sucrase inhibition.

View Article and Find Full Text PDF

In recent years, the function of pharmacological chaperones as a "thermodynamic stabilizer" has been attracting attention in combination therapy. The coadministration of a pharmacological chaperone and recombinant human acid α-glucosidase (rhGAA) leads to improved stability and maturation by binding to the folded state of the rhGAA and thereby promotes enzyme delivery. This study provides the first example of a strategy to design a high-affinity ligand toward lysosomal acid α-glucosidase (GAA) focusing on alkyl branches on 1-deoxynojirimycin (DNJ); 5--heptyl-DNJ produced a nanomolar affinity for GAA with a value of 0.

View Article and Find Full Text PDF

Pseudouridimycin (), a potent antibiotic against both Gram-positive and Gram-negative bacteria including multi-drug-resistant strains with a new mode of action isolated from sp, was synthesized by a convergent strategy from 5'-amino-pseudouridine and -hydroxy-dipeptide in 23% total yield. The key intermediate was synthesized by hydroxylaminolysis of the nitrone derived from glutamine and subsequent glycylation with glycine chloride. The synthetic method provides an efficient and practical way for the synthesis of -hydroxylated peptidyl nucleoside.

View Article and Find Full Text PDF

Inspired by Roush's pioneering work on rare sugars, we have developed a scalable, stereoselective, de novo synthesis of orthogonally protected C2-fluoro digitoxose and cymarose, utilizing Sharpless kinetic resolution and organocatalytic fluorination as key steps. The utility of this strategy is demonstrated by the synthesis of a fluorinated analogue of digoxin, which indicates the fluorine on the sugar ring may have a significant impact on biological activity.

View Article and Find Full Text PDF
Article Synopsis
  • Huntington's disease (HD) is linked to the toxic aggregation of a mutated protein called huntingtin (mHtt), which causes neuronal dysfunction.
  • Researchers developed a specific gold nanoparticle (AuNP) complex that targets and reduces the toxicity of mHtt by using a specially designed peptide, JLD1, that binds to the toxic aggregates.
  • The modified AuNPs (AuNPs-JLD1-PEI) can enter cells, break down mHtt inclusions, and have shown promising results in a larval model of HD, indicating potential new treatments for this disease.
View Article and Find Full Text PDF

Four diastereomers belonging to the family of casuarines, including casuarine (1), 6--casuarine (2), 7--casuarine (13) and 6,7-di-casuarine (14), have been synthesized from D-arabinose-derived cyclic nitrone 7 and nitrone-derived aldehyde 4 by a stereocomplementary strategy. Glycosidase inhibition comparison showed that 6--casuarine (2) exhibits enhanced inhibition of trehalase (IC = 9.7 μM) and 6,7-di-casuarine (14) leads to specific inhibition of trehalase.

View Article and Find Full Text PDF

5-C-Alkyl-DNJ and 5-C-alkyl-l-ido-DNJ derivatives have been designed and synthesized efficiently from an l-sorbose-derived cyclic nitrone. The DNJ and l-ido-DNJ derivatives with C-5 alkyl chains ranging from methyl to dodecyl were assayed against various glycosidases to study the effect of chain length on enzyme inhibition. Glycosidase inhibition study of DNJ derivatives showed potent and selective inhibitions of α-glucosidase; DNJ derivatives with methyl, pentyl to octyl, undecyl and dodecyl as C-5 branched chains showed significantly improved rat intestinal maltase inhibition.

View Article and Find Full Text PDF

Ten pairs of pyrrolidine analogues of pochonicine and its stereoisomers have been synthesized from four enantiomeric pairs of polyhydroxylated cyclic nitrones. Among the ten N-acetylamino pyrrolidine analogues, only compounds with 2,5-dideoxy-2,5-imino-d-mannitol (DMDP) and pochonicine (1) configurations showed potent inhibition of β-N-acetylhexosaminidases (β-HexNAcases); while 1-amino analogues lost almost all their inhibitions towards the tested enzymes. The assay results reveal the importance of the -acetylamino group and the possible right configurations of pyrrolidine ring required for this type of inhibitors.

View Article and Find Full Text PDF

N-Substituted derivatives of 1,4-dideoxy-1,4-imino-d-mannitol (DIM), the pyrrolidine core of swainsonine, have been synthesized efficiently and stereoselectively from d-mannose with 2,3:5,6-di-O-isopropylidene DIM (10) as a key intermediate. These N-substituted derivatives include N-alkylated, N-alkenylated, N-hydroxyalkylated and N-aralkylated DIMs with the carbon number of the alkyl chain ranging from one to nine. The obtained 33 N-substituted DIM derivatives were assayed against various glycosidases, which allowed a systematic evaluation of their glycosidase inhibition profiles.

View Article and Find Full Text PDF

Cross-metathesis (CM) and Keck asymmetric allylation, which allows access to defined stereochemistry of a remote side chain hydroxyl group, are the key steps in a versatile synthesis of broussonetine M () from the d-arabinose-derived cyclic nitrone . By a similar strategy, -broussonetine M () and six other stereoisomers have been synthesized, respectively, starting from l--nitrone (), l--nitrone (), and l--nitrone () in five steps, in 26%-31% overall yield. The natural product broussonetine M () and were potent inhibitors of β-glucosidase (IC = 6.

View Article and Find Full Text PDF

The abnormal assembly of misfolded proteins into neurotoxic aggregates is the hallmark associated with neurodegenerative diseases. Herein, we establish a photocontrollable platform to trigger amyloidogenesis to recapitulate the pathogenesis of amyotrophic lateral sclerosis (ALS) by applying a chemically engineered probe as a "switch" in live cells. This probe is composed of an amyloidogenic peptide from TDP-43, a photolabile linker, a polycationic sequence both to mask amyloidogenicity and for cell penetration, and a fluorophore for visualization.

View Article and Find Full Text PDF

The first total synthesis of (+)-broussonetine W (4), a naturally-occurring pyrrolidine iminosugar isolated from the traditional Chinese medical plant Broussonetia kazinoki SIEB (Moraceae), has been completed through a concise synthetic route starting from the readily available d-arabinose derived cyclic nitrone 10 in 11 steps and 31% overall yield, with regioselective installation of the α,β-unsaturated ketone functional group by the elimination of HBr from α-bromoketone as the key step. A number of analogs of (+)-broussonetine W (4) with variable side chain length, different polyhydroxylated pyrrolidine core configurations or saturated cyclohexanones have also been prepared to explore the glycosidase inhibition and the preliminary structure-activity relationship of this intriguing class of compounds. Glycosidase inhibition studies identified the natural product (+)-broussonetine W (4) as a selective and potent inhibitor of β-galactosidase (IC50 = 0.

View Article and Find Full Text PDF

The key step in the concise syntheses of calystegine B2 and its C-2 epimer calystegine B3 was the construction of cycloheptanone 8via an intramolecular Nozaki-Hiyama-Kishi (NHK) reaction of 9, an aldehyde containing a Z-vinyl iodide. Vinyl iodide 9 was obtained by the Stork olefination of aldehyde 10, derived from carbohydrate starting materials. Calystegines B2 (3) and B3 (4) were synthesized from d-xylose and l-arabinose derivatives respectively in 11 steps in excellent overall yields (27% and 19%).

View Article and Find Full Text PDF

Epimerization of C5 of an N-hydroxypyrrolidine ring by regioselective oxidation to a nitrone followed by diastereoselective reduction provides a new approach to the synthesis of swainsonine and related compounds. The only protection in the synthesis of the potent mannosidase inhibitor DIM (1,4-dideoxy-1,4-imino-d-mannitol) was the acetonation of d-mannose.

View Article and Find Full Text PDF