Federated learning (FL) enables a decentralized machine learning paradigm for multiple clients to collaboratively train a generalized global model without sharing their private data. Most existing works have focused on designing FL systems for unimodal data, limiting their potential to exploit valuable multimodal data for future personalized applications. Moreover, the majority of FL approaches still rely on labeled data at the client side, which is often constrained by the inability of users to self-annotate their data in real-world applications.
View Article and Find Full Text PDFFederated learning (FL) has emerged as a promising approach to collaboratively train machine learning models across multiple edge devices while preserving privacy. The success of FL hinges on the efficiency of participating models and their ability to handle the unique challenges of distributed learning. While several variants of Vision Transformer (ViT) have shown great potential as alternatives to modern convolutional neural networks (CNNs) for centralized training, the unprecedented size and higher computational demands hinder their deployment on resource-constrained edge devices, challenging their widespread application in FL.
View Article and Find Full Text PDFFederated learning (FL) is a promising approach that enables distributed clients to collaboratively train a global model while preserving their data privacy. However, FL often suffers from data heterogeneity problems, which can significantly affect its performance. To address this, clustered federated learning (CFL) has been proposed to construct personalized models for different client clusters.
View Article and Find Full Text PDF